%PDF- %PDF-
| Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/src/crypto/ |
| Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/src/crypto/crypto_util.cc |
#include "crypto/crypto_util.h"
#include "async_wrap-inl.h"
#include "crypto/crypto_bio.h"
#include "crypto/crypto_keys.h"
#include "env-inl.h"
#include "memory_tracker-inl.h"
#include "node_buffer.h"
#include "node_options-inl.h"
#include "string_bytes.h"
#include "threadpoolwork-inl.h"
#include "util-inl.h"
#include "v8.h"
#include "math.h"
#if OPENSSL_VERSION_MAJOR >= 3
#include "openssl/provider.h"
#endif
#include <openssl/rand.h>
namespace node {
using v8::ArrayBuffer;
using v8::BackingStore;
using v8::BigInt;
using v8::Context;
using v8::Exception;
using v8::FunctionCallbackInfo;
using v8::HandleScope;
using v8::Isolate;
using v8::Just;
using v8::Local;
using v8::Maybe;
using v8::MaybeLocal;
using v8::NewStringType;
using v8::Nothing;
using v8::Object;
using v8::String;
using v8::TryCatch;
using v8::Uint32;
using v8::Uint8Array;
using v8::Value;
namespace crypto {
int VerifyCallback(int preverify_ok, X509_STORE_CTX* ctx) {
// From https://www.openssl.org/docs/man1.1.1/man3/SSL_verify_cb:
//
// If VerifyCallback returns 1, the verification process is continued. If
// VerifyCallback always returns 1, the TLS/SSL handshake will not be
// terminated with respect to verification failures and the connection will
// be established. The calling process can however retrieve the error code
// of the last verification error using SSL_get_verify_result(3) or by
// maintaining its own error storage managed by VerifyCallback.
//
// Since we cannot perform I/O quickly enough with X509_STORE_CTX_ APIs in
// this callback, we ignore all preverify_ok errors and let the handshake
// continue. It is imperative that the user use Connection::VerifyError after
// the 'secure' callback has been made.
return 1;
}
MUST_USE_RESULT CSPRNGResult CSPRNG(void* buffer, size_t length) {
unsigned char* buf = static_cast<unsigned char*>(buffer);
do {
if (1 == RAND_status()) {
#if OPENSSL_VERSION_MAJOR >= 3
if (1 == RAND_bytes_ex(nullptr, buf, length, 0)) return {true};
#else
while (length > INT_MAX && 1 == RAND_bytes(buf, INT_MAX)) {
buf += INT_MAX;
length -= INT_MAX;
}
if (length <= INT_MAX && 1 == RAND_bytes(buf, static_cast<int>(length)))
return {true};
#endif
}
#if OPENSSL_VERSION_MAJOR >= 3
const auto code = ERR_peek_last_error();
// A misconfigured OpenSSL 3 installation may report 1 from RAND_poll()
// and RAND_status() but fail in RAND_bytes() if it cannot look up
// a matching algorithm for the CSPRNG.
if (ERR_GET_LIB(code) == ERR_LIB_RAND) {
const auto reason = ERR_GET_REASON(code);
if (reason == RAND_R_ERROR_INSTANTIATING_DRBG ||
reason == RAND_R_UNABLE_TO_FETCH_DRBG ||
reason == RAND_R_UNABLE_TO_CREATE_DRBG) {
return {false};
}
}
#endif
} while (1 == RAND_poll());
return {false};
}
int PasswordCallback(char* buf, int size, int rwflag, void* u) {
const ByteSource* passphrase = *static_cast<const ByteSource**>(u);
if (passphrase != nullptr) {
size_t buflen = static_cast<size_t>(size);
size_t len = passphrase->size();
if (buflen < len)
return -1;
memcpy(buf, passphrase->data(), len);
return len;
}
return -1;
}
// This callback is used to avoid the default passphrase callback in OpenSSL
// which will typically prompt for the passphrase. The prompting is designed
// for the OpenSSL CLI, but works poorly for Node.js because it involves
// synchronous interaction with the controlling terminal, something we never
// want, and use this function to avoid it.
int NoPasswordCallback(char* buf, int size, int rwflag, void* u) {
return 0;
}
bool ProcessFipsOptions() {
/* Override FIPS settings in configuration file, if needed. */
if (per_process::cli_options->enable_fips_crypto ||
per_process::cli_options->force_fips_crypto) {
#if OPENSSL_VERSION_MAJOR >= 3
OSSL_PROVIDER* fips_provider = OSSL_PROVIDER_load(nullptr, "fips");
if (fips_provider == nullptr)
return false;
OSSL_PROVIDER_unload(fips_provider);
return EVP_default_properties_enable_fips(nullptr, 1) &&
EVP_default_properties_is_fips_enabled(nullptr);
#else
if (FIPS_mode() == 0) return FIPS_mode_set(1);
#endif
}
return true;
}
bool InitCryptoOnce(Isolate* isolate) {
static uv_once_t init_once = UV_ONCE_INIT;
TryCatch try_catch{isolate};
uv_once(&init_once, InitCryptoOnce);
if (try_catch.HasCaught() && !try_catch.HasTerminated()) {
try_catch.ReThrow();
return false;
}
return true;
}
// Protect accesses to FIPS state with a mutex. This should potentially
// be part of a larger mutex for global OpenSSL state.
static Mutex fips_mutex;
void InitCryptoOnce() {
Mutex::ScopedLock lock(per_process::cli_options_mutex);
Mutex::ScopedLock fips_lock(fips_mutex);
#ifndef OPENSSL_IS_BORINGSSL
OPENSSL_INIT_SETTINGS* settings = OPENSSL_INIT_new();
#if OPENSSL_VERSION_MAJOR < 3
// --openssl-config=...
if (!per_process::cli_options->openssl_config.empty()) {
const char* conf = per_process::cli_options->openssl_config.c_str();
OPENSSL_INIT_set_config_filename(settings, conf);
}
#endif
#if OPENSSL_VERSION_MAJOR >= 3
// --openssl-legacy-provider
if (per_process::cli_options->openssl_legacy_provider) {
OSSL_PROVIDER* legacy_provider = OSSL_PROVIDER_load(nullptr, "legacy");
if (legacy_provider == nullptr) {
fprintf(stderr, "Unable to load legacy provider.\n");
}
}
#endif
OPENSSL_init_ssl(0, settings);
OPENSSL_INIT_free(settings);
settings = nullptr;
#ifndef _WIN32
if (per_process::cli_options->secure_heap != 0) {
switch (CRYPTO_secure_malloc_init(
per_process::cli_options->secure_heap,
static_cast<int>(per_process::cli_options->secure_heap_min))) {
case 0:
fprintf(stderr, "Unable to initialize openssl secure heap.\n");
break;
case 2:
// Not a fatal error but worthy of a warning.
fprintf(stderr, "Unable to memory map openssl secure heap.\n");
break;
case 1:
// OK!
break;
}
}
#endif
#endif // OPENSSL_IS_BORINGSSL
// Turn off compression. Saves memory and protects against CRIME attacks.
// No-op with OPENSSL_NO_COMP builds of OpenSSL.
sk_SSL_COMP_zero(SSL_COMP_get_compression_methods());
#ifndef OPENSSL_NO_ENGINE
ERR_load_ENGINE_strings();
ENGINE_load_builtin_engines();
#endif // !OPENSSL_NO_ENGINE
}
void GetFipsCrypto(const FunctionCallbackInfo<Value>& args) {
Mutex::ScopedLock lock(per_process::cli_options_mutex);
Mutex::ScopedLock fips_lock(fips_mutex);
#if OPENSSL_VERSION_MAJOR >= 3
args.GetReturnValue().Set(EVP_default_properties_is_fips_enabled(nullptr) ?
1 : 0);
#else
args.GetReturnValue().Set(FIPS_mode() ? 1 : 0);
#endif
}
void SetFipsCrypto(const FunctionCallbackInfo<Value>& args) {
Mutex::ScopedLock lock(per_process::cli_options_mutex);
Mutex::ScopedLock fips_lock(fips_mutex);
CHECK(!per_process::cli_options->force_fips_crypto);
Environment* env = Environment::GetCurrent(args);
CHECK(env->owns_process_state());
bool enable = args[0]->BooleanValue(env->isolate());
#if OPENSSL_VERSION_MAJOR >= 3
if (enable == EVP_default_properties_is_fips_enabled(nullptr))
#else
if (static_cast<int>(enable) == FIPS_mode())
#endif
return; // No action needed.
#if OPENSSL_VERSION_MAJOR >= 3
if (!EVP_default_properties_enable_fips(nullptr, enable)) {
#else
if (!FIPS_mode_set(enable)) {
#endif
unsigned long err = ERR_get_error(); // NOLINT(runtime/int)
return ThrowCryptoError(env, err);
}
}
void TestFipsCrypto(const v8::FunctionCallbackInfo<v8::Value>& args) {
Mutex::ScopedLock lock(per_process::cli_options_mutex);
Mutex::ScopedLock fips_lock(fips_mutex);
#if OPENSSL_VERSION_MAJOR >= 3
OSSL_PROVIDER* fips_provider = nullptr;
if (OSSL_PROVIDER_available(nullptr, "fips")) {
fips_provider = OSSL_PROVIDER_load(nullptr, "fips");
}
const auto enabled = fips_provider == nullptr ? 0 :
OSSL_PROVIDER_self_test(fips_provider) ? 1 : 0;
#else
#ifdef OPENSSL_FIPS
const auto enabled = FIPS_selftest() ? 1 : 0;
#else // OPENSSL_FIPS
const auto enabled = 0;
#endif // OPENSSL_FIPS
#endif
args.GetReturnValue().Set(enabled);
}
void CryptoErrorStore::Capture() {
errors_.clear();
while (const uint32_t err = ERR_get_error()) {
char buf[256];
ERR_error_string_n(err, buf, sizeof(buf));
errors_.emplace_back(buf);
}
std::reverse(std::begin(errors_), std::end(errors_));
}
bool CryptoErrorStore::Empty() const {
return errors_.empty();
}
MaybeLocal<Value> CryptoErrorStore::ToException(
Environment* env,
Local<String> exception_string) const {
if (exception_string.IsEmpty()) {
CryptoErrorStore copy(*this);
if (copy.Empty()) {
// But possibly a bug...
copy.Insert(NodeCryptoError::OK);
}
// Use last element as the error message, everything else goes
// into the .opensslErrorStack property on the exception object.
const std::string& last_error_string = copy.errors_.back();
Local<String> exception_string;
if (!String::NewFromUtf8(
env->isolate(),
last_error_string.data(),
NewStringType::kNormal,
last_error_string.size()).ToLocal(&exception_string)) {
return MaybeLocal<Value>();
}
copy.errors_.pop_back();
return copy.ToException(env, exception_string);
}
Local<Value> exception_v = Exception::Error(exception_string);
CHECK(!exception_v.IsEmpty());
if (!Empty()) {
CHECK(exception_v->IsObject());
Local<Object> exception = exception_v.As<Object>();
Local<Value> stack;
if (!ToV8Value(env->context(), errors_).ToLocal(&stack) ||
exception->Set(env->context(), env->openssl_error_stack(), stack)
.IsNothing()) {
return MaybeLocal<Value>();
}
}
return exception_v;
}
ByteSource::ByteSource(ByteSource&& other) noexcept
: data_(other.data_),
allocated_data_(other.allocated_data_),
size_(other.size_) {
other.allocated_data_ = nullptr;
}
ByteSource::~ByteSource() {
OPENSSL_clear_free(allocated_data_, size_);
}
ByteSource& ByteSource::operator=(ByteSource&& other) noexcept {
if (&other != this) {
OPENSSL_clear_free(allocated_data_, size_);
data_ = other.data_;
allocated_data_ = other.allocated_data_;
other.allocated_data_ = nullptr;
size_ = other.size_;
}
return *this;
}
std::unique_ptr<BackingStore> ByteSource::ReleaseToBackingStore() {
// It's ok for allocated_data_ to be nullptr but
// only if size_ is zero.
CHECK_IMPLIES(size_ > 0, allocated_data_ != nullptr);
std::unique_ptr<BackingStore> ptr = ArrayBuffer::NewBackingStore(
allocated_data_,
size(),
[](void* data, size_t length, void* deleter_data) {
OPENSSL_clear_free(deleter_data, length);
}, allocated_data_);
CHECK(ptr);
allocated_data_ = nullptr;
data_ = nullptr;
size_ = 0;
return ptr;
}
Local<ArrayBuffer> ByteSource::ToArrayBuffer(Environment* env) {
std::unique_ptr<BackingStore> store = ReleaseToBackingStore();
return ArrayBuffer::New(env->isolate(), std::move(store));
}
MaybeLocal<Uint8Array> ByteSource::ToBuffer(Environment* env) {
Local<ArrayBuffer> ab = ToArrayBuffer(env);
return Buffer::New(env, ab, 0, ab->ByteLength());
}
ByteSource ByteSource::FromBIO(const BIOPointer& bio) {
CHECK(bio);
BUF_MEM* bptr;
BIO_get_mem_ptr(bio.get(), &bptr);
ByteSource::Builder out(bptr->length);
memcpy(out.data<void>(), bptr->data, bptr->length);
return std::move(out).release();
}
ByteSource ByteSource::FromEncodedString(Environment* env,
Local<String> key,
enum encoding enc) {
size_t length = 0;
ByteSource out;
if (StringBytes::Size(env->isolate(), key, enc).To(&length) && length > 0) {
ByteSource::Builder buf(length);
size_t actual =
StringBytes::Write(env->isolate(), buf.data<char>(), length, key, enc);
out = std::move(buf).release(actual);
}
return out;
}
ByteSource ByteSource::FromStringOrBuffer(Environment* env,
Local<Value> value) {
return IsAnyBufferSource(value) ? FromBuffer(value)
: FromString(env, value.As<String>());
}
ByteSource ByteSource::FromString(Environment* env, Local<String> str,
bool ntc) {
CHECK(str->IsString());
size_t size = str->Utf8Length(env->isolate());
size_t alloc_size = ntc ? size + 1 : size;
ByteSource::Builder out(alloc_size);
int opts = String::NO_OPTIONS;
if (!ntc) opts |= String::NO_NULL_TERMINATION;
str->WriteUtf8(env->isolate(), out.data<char>(), alloc_size, nullptr, opts);
return std::move(out).release();
}
ByteSource ByteSource::FromBuffer(Local<Value> buffer, bool ntc) {
ArrayBufferOrViewContents<char> buf(buffer);
return ntc ? buf.ToNullTerminatedCopy() : buf.ToByteSource();
}
ByteSource ByteSource::FromSecretKeyBytes(
Environment* env,
Local<Value> value) {
// A key can be passed as a string, buffer or KeyObject with type 'secret'.
// If it is a string, we need to convert it to a buffer. We are not doing that
// in JS to avoid creating an unprotected copy on the heap.
return value->IsString() || IsAnyBufferSource(value)
? ByteSource::FromStringOrBuffer(env, value)
: ByteSource::FromSymmetricKeyObjectHandle(value);
}
ByteSource ByteSource::NullTerminatedCopy(Environment* env,
Local<Value> value) {
return Buffer::HasInstance(value) ? FromBuffer(value, true)
: FromString(env, value.As<String>(), true);
}
ByteSource ByteSource::FromSymmetricKeyObjectHandle(Local<Value> handle) {
CHECK(handle->IsObject());
KeyObjectHandle* key = Unwrap<KeyObjectHandle>(handle.As<Object>());
CHECK_NOT_NULL(key);
return Foreign(key->Data()->GetSymmetricKey(),
key->Data()->GetSymmetricKeySize());
}
ByteSource ByteSource::Allocated(void* data, size_t size) {
return ByteSource(data, data, size);
}
ByteSource ByteSource::Foreign(const void* data, size_t size) {
return ByteSource(data, nullptr, size);
}
namespace error {
Maybe<bool> Decorate(Environment* env, Local<Object> obj,
unsigned long err) { // NOLINT(runtime/int)
if (err == 0) return Just(true); // No decoration necessary.
const char* ls = ERR_lib_error_string(err);
const char* fs = ERR_func_error_string(err);
const char* rs = ERR_reason_error_string(err);
Isolate* isolate = env->isolate();
Local<Context> context = isolate->GetCurrentContext();
if (ls != nullptr) {
if (obj->Set(context, env->library_string(),
OneByteString(isolate, ls)).IsNothing()) {
return Nothing<bool>();
}
}
if (fs != nullptr) {
if (obj->Set(context, env->function_string(),
OneByteString(isolate, fs)).IsNothing()) {
return Nothing<bool>();
}
}
if (rs != nullptr) {
if (obj->Set(context, env->reason_string(),
OneByteString(isolate, rs)).IsNothing()) {
return Nothing<bool>();
}
// SSL has no API to recover the error name from the number, so we
// transform reason strings like "this error" to "ERR_SSL_THIS_ERROR",
// which ends up being close to the original error macro name.
std::string reason(rs);
for (auto& c : reason) {
if (c == ' ')
c = '_';
else
c = ToUpper(c);
}
#define OSSL_ERROR_CODES_MAP(V) \
V(SYS) \
V(BN) \
V(RSA) \
V(DH) \
V(EVP) \
V(BUF) \
V(OBJ) \
V(PEM) \
V(DSA) \
V(X509) \
V(ASN1) \
V(CONF) \
V(CRYPTO) \
V(EC) \
V(SSL) \
V(BIO) \
V(PKCS7) \
V(X509V3) \
V(PKCS12) \
V(RAND) \
V(DSO) \
V(ENGINE) \
V(OCSP) \
V(UI) \
V(COMP) \
V(ECDSA) \
V(ECDH) \
V(OSSL_STORE) \
V(FIPS) \
V(CMS) \
V(TS) \
V(HMAC) \
V(CT) \
V(ASYNC) \
V(KDF) \
V(SM2) \
V(USER) \
#define V(name) case ERR_LIB_##name: lib = #name "_"; break;
const char* lib = "";
const char* prefix = "OSSL_";
switch (ERR_GET_LIB(err)) { OSSL_ERROR_CODES_MAP(V) }
#undef V
#undef OSSL_ERROR_CODES_MAP
// Don't generate codes like "ERR_OSSL_SSL_".
if (lib && strcmp(lib, "SSL_") == 0)
prefix = "";
// All OpenSSL reason strings fit in a single 80-column macro definition,
// all prefix lengths are <= 10, and ERR_OSSL_ is 9, so 128 is more than
// sufficient.
char code[128];
snprintf(code, sizeof(code), "ERR_%s%s%s", prefix, lib, reason.c_str());
if (obj->Set(env->isolate()->GetCurrentContext(),
env->code_string(),
OneByteString(env->isolate(), code)).IsNothing())
return Nothing<bool>();
}
return Just(true);
}
} // namespace error
void ThrowCryptoError(Environment* env,
unsigned long err, // NOLINT(runtime/int)
// Default, only used if there is no SSL `err` which can
// be used to create a long-style message string.
const char* message) {
char message_buffer[128] = {0};
if (err != 0 || message == nullptr) {
ERR_error_string_n(err, message_buffer, sizeof(message_buffer));
message = message_buffer;
}
HandleScope scope(env->isolate());
Local<String> exception_string;
Local<Value> exception;
Local<Object> obj;
if (!String::NewFromUtf8(env->isolate(), message).ToLocal(&exception_string))
return;
CryptoErrorStore errors;
errors.Capture();
if (!errors.ToException(env, exception_string).ToLocal(&exception) ||
!exception->ToObject(env->context()).ToLocal(&obj) ||
error::Decorate(env, obj, err).IsNothing()) {
return;
}
env->isolate()->ThrowException(exception);
}
#ifndef OPENSSL_NO_ENGINE
EnginePointer LoadEngineById(const char* id, CryptoErrorStore* errors) {
MarkPopErrorOnReturn mark_pop_error_on_return;
EnginePointer engine(ENGINE_by_id(id));
if (!engine) {
// Engine not found, try loading dynamically.
engine = EnginePointer(ENGINE_by_id("dynamic"));
if (engine) {
if (!ENGINE_ctrl_cmd_string(engine.get(), "SO_PATH", id, 0) ||
!ENGINE_ctrl_cmd_string(engine.get(), "LOAD", nullptr, 0)) {
engine.reset();
}
}
}
if (!engine && errors != nullptr) {
errors->Capture();
if (errors->Empty()) {
errors->Insert(NodeCryptoError::ENGINE_NOT_FOUND, id);
}
}
return engine;
}
bool SetEngine(const char* id, uint32_t flags, CryptoErrorStore* errors) {
ClearErrorOnReturn clear_error_on_return;
EnginePointer engine = LoadEngineById(id, errors);
if (!engine)
return false;
if (!ENGINE_set_default(engine.get(), flags)) {
if (errors != nullptr)
errors->Capture();
return false;
}
return true;
}
void SetEngine(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CHECK(args.Length() >= 2 && args[0]->IsString());
uint32_t flags;
if (!args[1]->Uint32Value(env->context()).To(&flags)) return;
const node::Utf8Value engine_id(env->isolate(), args[0]);
if (UNLIKELY(env->permission()->enabled())) {
return THROW_ERR_CRYPTO_CUSTOM_ENGINE_NOT_SUPPORTED(
env,
"Programmatic selection of OpenSSL engines is unsupported while the "
"experimental permission model is enabled");
}
args.GetReturnValue().Set(SetEngine(*engine_id, flags));
}
#endif // !OPENSSL_NO_ENGINE
MaybeLocal<Value> EncodeBignum(
Environment* env,
const BIGNUM* bn,
int size,
Local<Value>* error) {
std::vector<uint8_t> buf(size);
CHECK_EQ(BN_bn2binpad(bn, buf.data(), size), size);
return StringBytes::Encode(
env->isolate(),
reinterpret_cast<const char*>(buf.data()),
buf.size(),
BASE64URL,
error);
}
Maybe<bool> SetEncodedValue(
Environment* env,
Local<Object> target,
Local<String> name,
const BIGNUM* bn,
int size) {
Local<Value> value;
Local<Value> error;
CHECK_NOT_NULL(bn);
if (size == 0)
size = BN_num_bytes(bn);
if (!EncodeBignum(env, bn, size, &error).ToLocal(&value)) {
if (!error.IsEmpty())
env->isolate()->ThrowException(error);
return Nothing<bool>();
}
return target->Set(env->context(), name, value);
}
bool SetRsaOaepLabel(const EVPKeyCtxPointer& ctx, const ByteSource& label) {
if (label.size() != 0) {
// OpenSSL takes ownership of the label, so we need to create a copy.
void* label_copy = OPENSSL_memdup(label.data(), label.size());
CHECK_NOT_NULL(label_copy);
int ret = EVP_PKEY_CTX_set0_rsa_oaep_label(
ctx.get(), static_cast<unsigned char*>(label_copy), label.size());
if (ret <= 0) {
OPENSSL_free(label_copy);
return false;
}
}
return true;
}
CryptoJobMode GetCryptoJobMode(v8::Local<v8::Value> args) {
CHECK(args->IsUint32());
uint32_t mode = args.As<v8::Uint32>()->Value();
CHECK_LE(mode, kCryptoJobSync);
return static_cast<CryptoJobMode>(mode);
}
namespace {
// SecureBuffer uses OPENSSL_secure_malloc to allocate a Uint8Array.
// Without --secure-heap, OpenSSL's secure heap is disabled,
// in which case this has the same semantics as
// using OPENSSL_malloc. However, if the secure heap is
// initialized, SecureBuffer will automatically use it.
void SecureBuffer(const FunctionCallbackInfo<Value>& args) {
CHECK(args[0]->IsUint32());
Environment* env = Environment::GetCurrent(args);
uint32_t len = args[0].As<Uint32>()->Value();
void* data = OPENSSL_secure_zalloc(len);
if (data == nullptr) {
// There's no memory available for the allocation.
// Return nothing.
return;
}
std::shared_ptr<BackingStore> store =
ArrayBuffer::NewBackingStore(
data,
len,
[](void* data, size_t len, void* deleter_data) {
OPENSSL_secure_clear_free(data, len);
},
data);
Local<ArrayBuffer> buffer = ArrayBuffer::New(env->isolate(), store);
args.GetReturnValue().Set(Uint8Array::New(buffer, 0, len));
}
void SecureHeapUsed(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
if (CRYPTO_secure_malloc_initialized())
args.GetReturnValue().Set(
BigInt::New(env->isolate(), CRYPTO_secure_used()));
}
} // namespace
namespace Util {
void Initialize(Environment* env, Local<Object> target) {
Local<Context> context = env->context();
#ifndef OPENSSL_NO_ENGINE
SetMethod(context, target, "setEngine", SetEngine);
#endif // !OPENSSL_NO_ENGINE
SetMethodNoSideEffect(context, target, "getFipsCrypto", GetFipsCrypto);
SetMethod(context, target, "setFipsCrypto", SetFipsCrypto);
SetMethodNoSideEffect(context, target, "testFipsCrypto", TestFipsCrypto);
NODE_DEFINE_CONSTANT(target, kCryptoJobAsync);
NODE_DEFINE_CONSTANT(target, kCryptoJobSync);
SetMethod(context, target, "secureBuffer", SecureBuffer);
SetMethod(context, target, "secureHeapUsed", SecureHeapUsed);
}
void RegisterExternalReferences(ExternalReferenceRegistry* registry) {
#ifndef OPENSSL_NO_ENGINE
registry->Register(SetEngine);
#endif // !OPENSSL_NO_ENGINE
registry->Register(GetFipsCrypto);
registry->Register(SetFipsCrypto);
registry->Register(TestFipsCrypto);
registry->Register(SecureBuffer);
registry->Register(SecureHeapUsed);
}
} // namespace Util
} // namespace crypto
} // namespace node