%PDF- %PDF-
| Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/src/crypto/ |
| Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/src/crypto/crypto_cipher.cc |
#include "crypto/crypto_cipher.h"
#include "base_object-inl.h"
#include "crypto/crypto_util.h"
#include "env-inl.h"
#include "memory_tracker-inl.h"
#include "node_buffer.h"
#include "node_internals.h"
#include "node_process-inl.h"
#include "v8.h"
namespace node {
using v8::Array;
using v8::ArrayBuffer;
using v8::BackingStore;
using v8::Context;
using v8::FunctionCallbackInfo;
using v8::FunctionTemplate;
using v8::HandleScope;
using v8::Int32;
using v8::Isolate;
using v8::Local;
using v8::Object;
using v8::Uint32;
using v8::Value;
namespace crypto {
namespace {
bool IsSupportedAuthenticatedMode(const EVP_CIPHER* cipher) {
switch (EVP_CIPHER_mode(cipher)) {
case EVP_CIPH_CCM_MODE:
case EVP_CIPH_GCM_MODE:
#ifndef OPENSSL_NO_OCB
case EVP_CIPH_OCB_MODE:
#endif
return true;
case EVP_CIPH_STREAM_CIPHER:
return EVP_CIPHER_nid(cipher) == NID_chacha20_poly1305;
default:
return false;
}
}
bool IsSupportedAuthenticatedMode(const EVP_CIPHER_CTX* ctx) {
const EVP_CIPHER* cipher = EVP_CIPHER_CTX_cipher(ctx);
return IsSupportedAuthenticatedMode(cipher);
}
bool IsValidGCMTagLength(unsigned int tag_len) {
return tag_len == 4 || tag_len == 8 || (tag_len >= 12 && tag_len <= 16);
}
// Collects and returns information on the given cipher
void GetCipherInfo(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CHECK(args[0]->IsObject());
Local<Object> info = args[0].As<Object>();
CHECK(args[1]->IsString() || args[1]->IsInt32());
const EVP_CIPHER* cipher;
if (args[1]->IsString()) {
Utf8Value name(env->isolate(), args[1]);
cipher = EVP_get_cipherbyname(*name);
} else {
int nid = args[1].As<Int32>()->Value();
cipher = EVP_get_cipherbynid(nid);
}
if (cipher == nullptr)
return;
int mode = EVP_CIPHER_mode(cipher);
int iv_length = EVP_CIPHER_iv_length(cipher);
int key_length = EVP_CIPHER_key_length(cipher);
int block_length = EVP_CIPHER_block_size(cipher);
const char* mode_label = nullptr;
switch (mode) {
case EVP_CIPH_CBC_MODE: mode_label = "cbc"; break;
case EVP_CIPH_CCM_MODE: mode_label = "ccm"; break;
case EVP_CIPH_CFB_MODE: mode_label = "cfb"; break;
case EVP_CIPH_CTR_MODE: mode_label = "ctr"; break;
case EVP_CIPH_ECB_MODE: mode_label = "ecb"; break;
case EVP_CIPH_GCM_MODE: mode_label = "gcm"; break;
case EVP_CIPH_OCB_MODE: mode_label = "ocb"; break;
case EVP_CIPH_OFB_MODE: mode_label = "ofb"; break;
case EVP_CIPH_WRAP_MODE: mode_label = "wrap"; break;
case EVP_CIPH_XTS_MODE: mode_label = "xts"; break;
case EVP_CIPH_STREAM_CIPHER: mode_label = "stream"; break;
}
// If the testKeyLen and testIvLen arguments are specified,
// then we will make an attempt to see if they are usable for
// the cipher in question, returning undefined if they are not.
// If they are, the info object will be returned with the values
// given.
if (args[2]->IsInt32() || args[3]->IsInt32()) {
// Test and input IV or key length to determine if it's acceptable.
// If it is, then the getCipherInfo will succeed with the given
// values.
CipherCtxPointer ctx(EVP_CIPHER_CTX_new());
if (!EVP_CipherInit_ex(ctx.get(), cipher, nullptr, nullptr, nullptr, 1))
return;
if (args[2]->IsInt32()) {
int check_len = args[2].As<Int32>()->Value();
if (!EVP_CIPHER_CTX_set_key_length(ctx.get(), check_len))
return;
key_length = check_len;
}
if (args[3]->IsInt32()) {
int check_len = args[3].As<Int32>()->Value();
// For CCM modes, the IV may be between 7 and 13 bytes.
// For GCM and OCB modes, we'll check by attempting to
// set the value. For everything else, just check that
// check_len == iv_length.
switch (mode) {
case EVP_CIPH_CCM_MODE:
if (check_len < 7 || check_len > 13)
return;
break;
case EVP_CIPH_GCM_MODE:
// Fall through
case EVP_CIPH_OCB_MODE:
if (!EVP_CIPHER_CTX_ctrl(
ctx.get(),
EVP_CTRL_AEAD_SET_IVLEN,
check_len,
nullptr)) {
return;
}
break;
default:
if (check_len != iv_length)
return;
}
iv_length = check_len;
}
}
if (mode_label != nullptr &&
info->Set(
env->context(),
FIXED_ONE_BYTE_STRING(env->isolate(), "mode"),
OneByteString(env->isolate(), mode_label)).IsNothing()) {
return;
}
// OBJ_nid2sn(EVP_CIPHER_nid(cipher)) is used here instead of
// EVP_CIPHER_name(cipher) for compatibility with BoringSSL.
if (info->Set(
env->context(),
env->name_string(),
OneByteString(
env->isolate(),
OBJ_nid2sn(EVP_CIPHER_nid(cipher)))).IsNothing()) {
return;
}
if (info->Set(
env->context(),
FIXED_ONE_BYTE_STRING(env->isolate(), "nid"),
Int32::New(env->isolate(), EVP_CIPHER_nid(cipher))).IsNothing()) {
return;
}
// Stream ciphers do not have a meaningful block size
if (mode != EVP_CIPH_STREAM_CIPHER &&
info->Set(
env->context(),
FIXED_ONE_BYTE_STRING(env->isolate(), "blockSize"),
Int32::New(env->isolate(), block_length)).IsNothing()) {
return;
}
// Ciphers that do not use an IV shouldn't report a length
if (iv_length != 0 &&
info->Set(
env->context(),
FIXED_ONE_BYTE_STRING(env->isolate(), "ivLength"),
Int32::New(env->isolate(), iv_length)).IsNothing()) {
return;
}
if (info->Set(
env->context(),
FIXED_ONE_BYTE_STRING(env->isolate(), "keyLength"),
Int32::New(env->isolate(), key_length)).IsNothing()) {
return;
}
args.GetReturnValue().Set(info);
}
} // namespace
void CipherBase::GetSSLCiphers(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
SSLCtxPointer ctx(SSL_CTX_new(TLS_method()));
if (!ctx) {
return ThrowCryptoError(env, ERR_get_error(), "SSL_CTX_new");
}
SSLPointer ssl(SSL_new(ctx.get()));
if (!ssl) {
return ThrowCryptoError(env, ERR_get_error(), "SSL_new");
}
STACK_OF(SSL_CIPHER)* ciphers = SSL_get_ciphers(ssl.get());
// TLSv1.3 ciphers aren't listed by EVP. There are only 5, we could just
// document them, but since there are only 5, easier to just add them manually
// and not have to explain their absence in the API docs. They are lower-cased
// because the docs say they will be.
static const char* TLS13_CIPHERS[] = {
"tls_aes_256_gcm_sha384",
"tls_chacha20_poly1305_sha256",
"tls_aes_128_gcm_sha256",
"tls_aes_128_ccm_8_sha256",
"tls_aes_128_ccm_sha256"
};
const int n = sk_SSL_CIPHER_num(ciphers);
std::vector<Local<Value>> arr(n + arraysize(TLS13_CIPHERS));
for (int i = 0; i < n; ++i) {
const SSL_CIPHER* cipher = sk_SSL_CIPHER_value(ciphers, i);
arr[i] = OneByteString(env->isolate(), SSL_CIPHER_get_name(cipher));
}
for (unsigned i = 0; i < arraysize(TLS13_CIPHERS); ++i) {
const char* name = TLS13_CIPHERS[i];
arr[n + i] = OneByteString(env->isolate(), name);
}
args.GetReturnValue().Set(Array::New(env->isolate(), arr.data(), arr.size()));
}
void CipherBase::GetCiphers(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
MarkPopErrorOnReturn mark_pop_error_on_return;
CipherPushContext ctx(env);
EVP_CIPHER_do_all_sorted(
#if OPENSSL_VERSION_MAJOR >= 3
array_push_back<EVP_CIPHER,
EVP_CIPHER_fetch,
EVP_CIPHER_free,
EVP_get_cipherbyname,
EVP_CIPHER_get0_name>,
#else
array_push_back<EVP_CIPHER>,
#endif
&ctx);
args.GetReturnValue().Set(ctx.ToJSArray());
}
CipherBase::CipherBase(Environment* env,
Local<Object> wrap,
CipherKind kind)
: BaseObject(env, wrap),
ctx_(nullptr),
kind_(kind),
auth_tag_state_(kAuthTagUnknown),
auth_tag_len_(kNoAuthTagLength),
pending_auth_failed_(false) {
MakeWeak();
}
void CipherBase::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackFieldWithSize("context", ctx_ ? kSizeOf_EVP_CIPHER_CTX : 0);
}
void CipherBase::Initialize(Environment* env, Local<Object> target) {
Isolate* isolate = env->isolate();
Local<Context> context = env->context();
Local<FunctionTemplate> t = NewFunctionTemplate(isolate, New);
t->InstanceTemplate()->SetInternalFieldCount(CipherBase::kInternalFieldCount);
SetProtoMethod(isolate, t, "init", Init);
SetProtoMethod(isolate, t, "initiv", InitIv);
SetProtoMethod(isolate, t, "update", Update);
SetProtoMethod(isolate, t, "final", Final);
SetProtoMethod(isolate, t, "setAutoPadding", SetAutoPadding);
SetProtoMethodNoSideEffect(isolate, t, "getAuthTag", GetAuthTag);
SetProtoMethod(isolate, t, "setAuthTag", SetAuthTag);
SetProtoMethod(isolate, t, "setAAD", SetAAD);
SetConstructorFunction(context, target, "CipherBase", t);
SetMethodNoSideEffect(context, target, "getSSLCiphers", GetSSLCiphers);
SetMethodNoSideEffect(context, target, "getCiphers", GetCiphers);
SetMethod(context,
target,
"publicEncrypt",
PublicKeyCipher::Cipher<PublicKeyCipher::kPublic,
EVP_PKEY_encrypt_init,
EVP_PKEY_encrypt>);
SetMethod(context,
target,
"privateDecrypt",
PublicKeyCipher::Cipher<PublicKeyCipher::kPrivate,
EVP_PKEY_decrypt_init,
EVP_PKEY_decrypt>);
SetMethod(context,
target,
"privateEncrypt",
PublicKeyCipher::Cipher<PublicKeyCipher::kPrivate,
EVP_PKEY_sign_init,
EVP_PKEY_sign>);
SetMethod(context,
target,
"publicDecrypt",
PublicKeyCipher::Cipher<PublicKeyCipher::kPublic,
EVP_PKEY_verify_recover_init,
EVP_PKEY_verify_recover>);
SetMethodNoSideEffect(context, target, "getCipherInfo", GetCipherInfo);
NODE_DEFINE_CONSTANT(target, kWebCryptoCipherEncrypt);
NODE_DEFINE_CONSTANT(target, kWebCryptoCipherDecrypt);
}
void CipherBase::RegisterExternalReferences(
ExternalReferenceRegistry* registry) {
registry->Register(New);
registry->Register(Init);
registry->Register(InitIv);
registry->Register(Update);
registry->Register(Final);
registry->Register(SetAutoPadding);
registry->Register(GetAuthTag);
registry->Register(SetAuthTag);
registry->Register(SetAAD);
registry->Register(GetSSLCiphers);
registry->Register(GetCiphers);
registry->Register(PublicKeyCipher::Cipher<PublicKeyCipher::kPublic,
EVP_PKEY_encrypt_init,
EVP_PKEY_encrypt>);
registry->Register(PublicKeyCipher::Cipher<PublicKeyCipher::kPrivate,
EVP_PKEY_decrypt_init,
EVP_PKEY_decrypt>);
registry->Register(PublicKeyCipher::Cipher<PublicKeyCipher::kPrivate,
EVP_PKEY_sign_init,
EVP_PKEY_sign>);
registry->Register(PublicKeyCipher::Cipher<PublicKeyCipher::kPublic,
EVP_PKEY_verify_recover_init,
EVP_PKEY_verify_recover>);
registry->Register(GetCipherInfo);
}
void CipherBase::New(const FunctionCallbackInfo<Value>& args) {
CHECK(args.IsConstructCall());
Environment* env = Environment::GetCurrent(args);
new CipherBase(env, args.This(), args[0]->IsTrue() ? kCipher : kDecipher);
}
void CipherBase::CommonInit(const char* cipher_type,
const EVP_CIPHER* cipher,
const unsigned char* key,
int key_len,
const unsigned char* iv,
int iv_len,
unsigned int auth_tag_len) {
CHECK(!ctx_);
ctx_.reset(EVP_CIPHER_CTX_new());
const int mode = EVP_CIPHER_mode(cipher);
if (mode == EVP_CIPH_WRAP_MODE)
EVP_CIPHER_CTX_set_flags(ctx_.get(), EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
const bool encrypt = (kind_ == kCipher);
if (1 != EVP_CipherInit_ex(ctx_.get(), cipher, nullptr,
nullptr, nullptr, encrypt)) {
return ThrowCryptoError(env(), ERR_get_error(),
"Failed to initialize cipher");
}
if (IsSupportedAuthenticatedMode(cipher)) {
CHECK_GE(iv_len, 0);
if (!InitAuthenticated(cipher_type, iv_len, auth_tag_len))
return;
}
if (!EVP_CIPHER_CTX_set_key_length(ctx_.get(), key_len)) {
ctx_.reset();
return THROW_ERR_CRYPTO_INVALID_KEYLEN(env());
}
if (1 != EVP_CipherInit_ex(ctx_.get(), nullptr, nullptr, key, iv, encrypt)) {
return ThrowCryptoError(env(), ERR_get_error(),
"Failed to initialize cipher");
}
}
void CipherBase::Init(const char* cipher_type,
const ArrayBufferOrViewContents<unsigned char>& key_buf,
unsigned int auth_tag_len) {
HandleScope scope(env()->isolate());
MarkPopErrorOnReturn mark_pop_error_on_return;
const EVP_CIPHER* const cipher = EVP_get_cipherbyname(cipher_type);
if (cipher == nullptr)
return THROW_ERR_CRYPTO_UNKNOWN_CIPHER(env());
unsigned char key[EVP_MAX_KEY_LENGTH];
unsigned char iv[EVP_MAX_IV_LENGTH];
int key_len = EVP_BytesToKey(cipher,
EVP_md5(),
nullptr,
key_buf.data(),
key_buf.size(),
1,
key,
iv);
CHECK_NE(key_len, 0);
const int mode = EVP_CIPHER_mode(cipher);
if (kind_ == kCipher && (mode == EVP_CIPH_CTR_MODE ||
mode == EVP_CIPH_GCM_MODE ||
mode == EVP_CIPH_CCM_MODE)) {
// Ignore the return value (i.e. possible exception) because we are
// not calling back into JS anyway.
ProcessEmitWarning(env(),
"Use Cipheriv for counter mode of %s",
cipher_type);
}
CommonInit(cipher_type, cipher, key, key_len, iv,
EVP_CIPHER_iv_length(cipher), auth_tag_len);
}
void CipherBase::Init(const FunctionCallbackInfo<Value>& args) {
CipherBase* cipher;
ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());
Environment* env = Environment::GetCurrent(args);
CHECK_GE(args.Length(), 3);
const Utf8Value cipher_type(args.GetIsolate(), args[0]);
ArrayBufferOrViewContents<unsigned char> key_buf(args[1]);
if (!key_buf.CheckSizeInt32())
return THROW_ERR_OUT_OF_RANGE(env, "password is too large");
// Don't assign to cipher->auth_tag_len_ directly; the value might not
// represent a valid length at this point.
unsigned int auth_tag_len;
if (args[2]->IsUint32()) {
auth_tag_len = args[2].As<Uint32>()->Value();
} else {
CHECK(args[2]->IsInt32() && args[2].As<Int32>()->Value() == -1);
auth_tag_len = kNoAuthTagLength;
}
cipher->Init(*cipher_type, key_buf, auth_tag_len);
}
void CipherBase::InitIv(const char* cipher_type,
const ByteSource& key_buf,
const ArrayBufferOrViewContents<unsigned char>& iv_buf,
unsigned int auth_tag_len) {
HandleScope scope(env()->isolate());
MarkPopErrorOnReturn mark_pop_error_on_return;
const EVP_CIPHER* const cipher = EVP_get_cipherbyname(cipher_type);
if (cipher == nullptr)
return THROW_ERR_CRYPTO_UNKNOWN_CIPHER(env());
const int expected_iv_len = EVP_CIPHER_iv_length(cipher);
const bool is_authenticated_mode = IsSupportedAuthenticatedMode(cipher);
const bool has_iv = iv_buf.size() > 0;
// Throw if no IV was passed and the cipher requires an IV
if (!has_iv && expected_iv_len != 0)
return THROW_ERR_CRYPTO_INVALID_IV(env());
// Throw if an IV was passed which does not match the cipher's fixed IV length
// static_cast<int> for the iv_buf.size() is safe because we've verified
// prior that the value is not larger than INT_MAX.
if (!is_authenticated_mode &&
has_iv &&
static_cast<int>(iv_buf.size()) != expected_iv_len) {
return THROW_ERR_CRYPTO_INVALID_IV(env());
}
if (EVP_CIPHER_nid(cipher) == NID_chacha20_poly1305) {
CHECK(has_iv);
// Check for invalid IV lengths, since OpenSSL does not under some
// conditions:
// https://www.openssl.org/news/secadv/20190306.txt.
if (iv_buf.size() > 12)
return THROW_ERR_CRYPTO_INVALID_IV(env());
}
CommonInit(
cipher_type,
cipher,
key_buf.data<unsigned char>(),
key_buf.size(),
iv_buf.data(),
iv_buf.size(),
auth_tag_len);
}
void CipherBase::InitIv(const FunctionCallbackInfo<Value>& args) {
CipherBase* cipher;
ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());
Environment* env = cipher->env();
CHECK_GE(args.Length(), 4);
const Utf8Value cipher_type(env->isolate(), args[0]);
// The argument can either be a KeyObjectHandle or a byte source
// (e.g. ArrayBuffer, TypedArray, etc). Whichever it is, grab the
// raw bytes and proceed...
const ByteSource key_buf = ByteSource::FromSecretKeyBytes(env, args[1]);
if (UNLIKELY(key_buf.size() > INT_MAX))
return THROW_ERR_OUT_OF_RANGE(env, "key is too big");
ArrayBufferOrViewContents<unsigned char> iv_buf(
!args[2]->IsNull() ? args[2] : Local<Value>());
if (UNLIKELY(!iv_buf.CheckSizeInt32()))
return THROW_ERR_OUT_OF_RANGE(env, "iv is too big");
// Don't assign to cipher->auth_tag_len_ directly; the value might not
// represent a valid length at this point.
unsigned int auth_tag_len;
if (args[3]->IsUint32()) {
auth_tag_len = args[3].As<Uint32>()->Value();
} else {
CHECK(args[3]->IsInt32() && args[3].As<Int32>()->Value() == -1);
auth_tag_len = kNoAuthTagLength;
}
cipher->InitIv(*cipher_type, key_buf, iv_buf, auth_tag_len);
}
bool CipherBase::InitAuthenticated(
const char* cipher_type,
int iv_len,
unsigned int auth_tag_len) {
CHECK(IsAuthenticatedMode());
MarkPopErrorOnReturn mark_pop_error_on_return;
if (!EVP_CIPHER_CTX_ctrl(ctx_.get(),
EVP_CTRL_AEAD_SET_IVLEN,
iv_len,
nullptr)) {
THROW_ERR_CRYPTO_INVALID_IV(env());
return false;
}
const int mode = EVP_CIPHER_CTX_mode(ctx_.get());
if (mode == EVP_CIPH_GCM_MODE) {
if (auth_tag_len != kNoAuthTagLength) {
if (!IsValidGCMTagLength(auth_tag_len)) {
THROW_ERR_CRYPTO_INVALID_AUTH_TAG(
env(),
"Invalid authentication tag length: %u",
auth_tag_len);
return false;
}
// Remember the given authentication tag length for later.
auth_tag_len_ = auth_tag_len;
}
} else {
if (auth_tag_len == kNoAuthTagLength) {
// We treat ChaCha20-Poly1305 specially. Like GCM, the authentication tag
// length defaults to 16 bytes when encrypting. Unlike GCM, the
// authentication tag length also defaults to 16 bytes when decrypting,
// whereas GCM would accept any valid authentication tag length.
if (EVP_CIPHER_CTX_nid(ctx_.get()) == NID_chacha20_poly1305) {
auth_tag_len = 16;
} else {
THROW_ERR_CRYPTO_INVALID_AUTH_TAG(
env(), "authTagLength required for %s", cipher_type);
return false;
}
}
// TODO(tniessen) Support CCM decryption in FIPS mode
#if OPENSSL_VERSION_MAJOR >= 3
if (mode == EVP_CIPH_CCM_MODE && kind_ == kDecipher &&
EVP_default_properties_is_fips_enabled(nullptr)) {
#else
if (mode == EVP_CIPH_CCM_MODE && kind_ == kDecipher && FIPS_mode()) {
#endif
THROW_ERR_CRYPTO_UNSUPPORTED_OPERATION(env(),
"CCM encryption not supported in FIPS mode");
return false;
}
// Tell OpenSSL about the desired length.
if (!EVP_CIPHER_CTX_ctrl(ctx_.get(), EVP_CTRL_AEAD_SET_TAG, auth_tag_len,
nullptr)) {
THROW_ERR_CRYPTO_INVALID_AUTH_TAG(
env(), "Invalid authentication tag length: %u", auth_tag_len);
return false;
}
// Remember the given authentication tag length for later.
auth_tag_len_ = auth_tag_len;
if (mode == EVP_CIPH_CCM_MODE) {
// Restrict the message length to min(INT_MAX, 2^(8*(15-iv_len))-1) bytes.
CHECK(iv_len >= 7 && iv_len <= 13);
max_message_size_ = INT_MAX;
if (iv_len == 12) max_message_size_ = 16777215;
if (iv_len == 13) max_message_size_ = 65535;
}
}
return true;
}
bool CipherBase::CheckCCMMessageLength(int message_len) {
CHECK(ctx_);
CHECK(EVP_CIPHER_CTX_mode(ctx_.get()) == EVP_CIPH_CCM_MODE);
if (message_len > max_message_size_) {
THROW_ERR_CRYPTO_INVALID_MESSAGELEN(env());
return false;
}
return true;
}
bool CipherBase::IsAuthenticatedMode() const {
// Check if this cipher operates in an AEAD mode that we support.
CHECK(ctx_);
return IsSupportedAuthenticatedMode(ctx_.get());
}
void CipherBase::GetAuthTag(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CipherBase* cipher;
ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());
// Only callable after Final and if encrypting.
if (cipher->ctx_ ||
cipher->kind_ != kCipher ||
cipher->auth_tag_len_ == kNoAuthTagLength) {
return;
}
args.GetReturnValue().Set(
Buffer::Copy(env, cipher->auth_tag_, cipher->auth_tag_len_)
.FromMaybe(Local<Value>()));
}
void CipherBase::SetAuthTag(const FunctionCallbackInfo<Value>& args) {
CipherBase* cipher;
ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());
Environment* env = Environment::GetCurrent(args);
if (!cipher->ctx_ ||
!cipher->IsAuthenticatedMode() ||
cipher->kind_ != kDecipher ||
cipher->auth_tag_state_ != kAuthTagUnknown) {
return args.GetReturnValue().Set(false);
}
ArrayBufferOrViewContents<char> auth_tag(args[0]);
if (UNLIKELY(!auth_tag.CheckSizeInt32()))
return THROW_ERR_OUT_OF_RANGE(env, "buffer is too big");
unsigned int tag_len = auth_tag.size();
const int mode = EVP_CIPHER_CTX_mode(cipher->ctx_.get());
bool is_valid;
if (mode == EVP_CIPH_GCM_MODE) {
// Restrict GCM tag lengths according to NIST 800-38d, page 9.
is_valid = (cipher->auth_tag_len_ == kNoAuthTagLength ||
cipher->auth_tag_len_ == tag_len) &&
IsValidGCMTagLength(tag_len);
} else {
// At this point, the tag length is already known and must match the
// length of the given authentication tag.
CHECK(IsSupportedAuthenticatedMode(cipher->ctx_.get()));
CHECK_NE(cipher->auth_tag_len_, kNoAuthTagLength);
is_valid = cipher->auth_tag_len_ == tag_len;
}
if (!is_valid) {
return THROW_ERR_CRYPTO_INVALID_AUTH_TAG(
env, "Invalid authentication tag length: %u", tag_len);
}
cipher->auth_tag_len_ = tag_len;
cipher->auth_tag_state_ = kAuthTagKnown;
CHECK_LE(cipher->auth_tag_len_, sizeof(cipher->auth_tag_));
memset(cipher->auth_tag_, 0, sizeof(cipher->auth_tag_));
auth_tag.CopyTo(cipher->auth_tag_, cipher->auth_tag_len_);
args.GetReturnValue().Set(true);
}
bool CipherBase::MaybePassAuthTagToOpenSSL() {
if (auth_tag_state_ == kAuthTagKnown) {
if (!EVP_CIPHER_CTX_ctrl(ctx_.get(),
EVP_CTRL_AEAD_SET_TAG,
auth_tag_len_,
reinterpret_cast<unsigned char*>(auth_tag_))) {
return false;
}
auth_tag_state_ = kAuthTagPassedToOpenSSL;
}
return true;
}
bool CipherBase::SetAAD(
const ArrayBufferOrViewContents<unsigned char>& data,
int plaintext_len) {
if (!ctx_ || !IsAuthenticatedMode())
return false;
MarkPopErrorOnReturn mark_pop_error_on_return;
int outlen;
const int mode = EVP_CIPHER_CTX_mode(ctx_.get());
// When in CCM mode, we need to set the authentication tag and the plaintext
// length in advance.
if (mode == EVP_CIPH_CCM_MODE) {
if (plaintext_len < 0) {
THROW_ERR_MISSING_ARGS(env(),
"options.plaintextLength required for CCM mode with AAD");
return false;
}
if (!CheckCCMMessageLength(plaintext_len))
return false;
if (kind_ == kDecipher) {
if (!MaybePassAuthTagToOpenSSL())
return false;
}
// Specify the plaintext length.
if (!EVP_CipherUpdate(ctx_.get(), nullptr, &outlen, nullptr, plaintext_len))
return false;
}
return 1 == EVP_CipherUpdate(ctx_.get(),
nullptr,
&outlen,
data.data(),
data.size());
}
void CipherBase::SetAAD(const FunctionCallbackInfo<Value>& args) {
CipherBase* cipher;
ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());
Environment* env = Environment::GetCurrent(args);
CHECK_EQ(args.Length(), 2);
CHECK(args[1]->IsInt32());
int plaintext_len = args[1].As<Int32>()->Value();
ArrayBufferOrViewContents<unsigned char> buf(args[0]);
if (UNLIKELY(!buf.CheckSizeInt32()))
return THROW_ERR_OUT_OF_RANGE(env, "buffer is too big");
args.GetReturnValue().Set(cipher->SetAAD(buf, plaintext_len));
}
CipherBase::UpdateResult CipherBase::Update(
const char* data,
size_t len,
std::unique_ptr<BackingStore>* out) {
if (!ctx_ || len > INT_MAX)
return kErrorState;
MarkPopErrorOnReturn mark_pop_error_on_return;
const int mode = EVP_CIPHER_CTX_mode(ctx_.get());
if (mode == EVP_CIPH_CCM_MODE && !CheckCCMMessageLength(len))
return kErrorMessageSize;
// Pass the authentication tag to OpenSSL if possible. This will only happen
// once, usually on the first update.
if (kind_ == kDecipher && IsAuthenticatedMode())
CHECK(MaybePassAuthTagToOpenSSL());
const int block_size = EVP_CIPHER_CTX_block_size(ctx_.get());
CHECK_GT(block_size, 0);
if (len + block_size > INT_MAX) return kErrorState;
int buf_len = len + block_size;
// For key wrapping algorithms, get output size by calling
// EVP_CipherUpdate() with null output.
if (kind_ == kCipher && mode == EVP_CIPH_WRAP_MODE &&
EVP_CipherUpdate(ctx_.get(),
nullptr,
&buf_len,
reinterpret_cast<const unsigned char*>(data),
len) != 1) {
return kErrorState;
}
{
NoArrayBufferZeroFillScope no_zero_fill_scope(env()->isolate_data());
*out = ArrayBuffer::NewBackingStore(env()->isolate(), buf_len);
}
int r = EVP_CipherUpdate(ctx_.get(),
static_cast<unsigned char*>((*out)->Data()),
&buf_len,
reinterpret_cast<const unsigned char*>(data),
len);
CHECK_LE(static_cast<size_t>(buf_len), (*out)->ByteLength());
if (buf_len == 0)
*out = ArrayBuffer::NewBackingStore(env()->isolate(), 0);
else
*out = BackingStore::Reallocate(env()->isolate(), std::move(*out), buf_len);
// When in CCM mode, EVP_CipherUpdate will fail if the authentication tag is
// invalid. In that case, remember the error and throw in final().
if (!r && kind_ == kDecipher && mode == EVP_CIPH_CCM_MODE) {
pending_auth_failed_ = true;
return kSuccess;
}
return r == 1 ? kSuccess : kErrorState;
}
void CipherBase::Update(const FunctionCallbackInfo<Value>& args) {
Decode<CipherBase>(args, [](CipherBase* cipher,
const FunctionCallbackInfo<Value>& args,
const char* data, size_t size) {
std::unique_ptr<BackingStore> out;
Environment* env = Environment::GetCurrent(args);
if (UNLIKELY(size > INT_MAX))
return THROW_ERR_OUT_OF_RANGE(env, "data is too long");
UpdateResult r = cipher->Update(data, size, &out);
if (r != kSuccess) {
if (r == kErrorState) {
ThrowCryptoError(env, ERR_get_error(),
"Trying to add data in unsupported state");
}
return;
}
Local<ArrayBuffer> ab = ArrayBuffer::New(env->isolate(), std::move(out));
args.GetReturnValue().Set(
Buffer::New(env, ab, 0, ab->ByteLength()).FromMaybe(Local<Value>()));
});
}
bool CipherBase::SetAutoPadding(bool auto_padding) {
if (!ctx_)
return false;
MarkPopErrorOnReturn mark_pop_error_on_return;
return EVP_CIPHER_CTX_set_padding(ctx_.get(), auto_padding);
}
void CipherBase::SetAutoPadding(const FunctionCallbackInfo<Value>& args) {
CipherBase* cipher;
ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());
bool b = cipher->SetAutoPadding(args.Length() < 1 || args[0]->IsTrue());
args.GetReturnValue().Set(b); // Possibly report invalid state failure
}
bool CipherBase::Final(std::unique_ptr<BackingStore>* out) {
if (!ctx_)
return false;
const int mode = EVP_CIPHER_CTX_mode(ctx_.get());
{
NoArrayBufferZeroFillScope no_zero_fill_scope(env()->isolate_data());
*out = ArrayBuffer::NewBackingStore(env()->isolate(),
static_cast<size_t>(EVP_CIPHER_CTX_block_size(ctx_.get())));
}
if (kind_ == kDecipher && IsSupportedAuthenticatedMode(ctx_.get()))
MaybePassAuthTagToOpenSSL();
// OpenSSL v1.x doesn't verify the presence of the auth tag so do
// it ourselves, see https://github.com/nodejs/node/issues/45874.
if (OPENSSL_VERSION_NUMBER < 0x30000000L && kind_ == kDecipher &&
NID_chacha20_poly1305 == EVP_CIPHER_CTX_nid(ctx_.get()) &&
auth_tag_state_ != kAuthTagPassedToOpenSSL) {
return false;
}
// In CCM mode, final() only checks whether authentication failed in update().
// EVP_CipherFinal_ex must not be called and will fail.
bool ok;
if (kind_ == kDecipher && mode == EVP_CIPH_CCM_MODE) {
ok = !pending_auth_failed_;
*out = ArrayBuffer::NewBackingStore(env()->isolate(), 0);
} else {
int out_len = (*out)->ByteLength();
ok = EVP_CipherFinal_ex(ctx_.get(),
static_cast<unsigned char*>((*out)->Data()),
&out_len) == 1;
CHECK_LE(static_cast<size_t>(out_len), (*out)->ByteLength());
if (out_len > 0) {
*out =
BackingStore::Reallocate(env()->isolate(), std::move(*out), out_len);
} else {
*out = ArrayBuffer::NewBackingStore(env()->isolate(), 0);
}
if (ok && kind_ == kCipher && IsAuthenticatedMode()) {
// In GCM mode, the authentication tag length can be specified in advance,
// but defaults to 16 bytes when encrypting. In CCM and OCB mode, it must
// always be given by the user.
if (auth_tag_len_ == kNoAuthTagLength) {
CHECK(mode == EVP_CIPH_GCM_MODE);
auth_tag_len_ = sizeof(auth_tag_);
}
ok = (1 == EVP_CIPHER_CTX_ctrl(ctx_.get(), EVP_CTRL_AEAD_GET_TAG,
auth_tag_len_,
reinterpret_cast<unsigned char*>(auth_tag_)));
}
}
ctx_.reset();
return ok;
}
void CipherBase::Final(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CipherBase* cipher;
ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());
if (cipher->ctx_ == nullptr)
return THROW_ERR_CRYPTO_INVALID_STATE(env);
std::unique_ptr<BackingStore> out;
// Check IsAuthenticatedMode() first, Final() destroys the EVP_CIPHER_CTX.
const bool is_auth_mode = cipher->IsAuthenticatedMode();
bool r = cipher->Final(&out);
if (!r) {
const char* msg = is_auth_mode
? "Unsupported state or unable to authenticate data"
: "Unsupported state";
return ThrowCryptoError(env, ERR_get_error(), msg);
}
Local<ArrayBuffer> ab = ArrayBuffer::New(env->isolate(), std::move(out));
args.GetReturnValue().Set(
Buffer::New(env, ab, 0, ab->ByteLength()).FromMaybe(Local<Value>()));
}
template <PublicKeyCipher::Operation operation,
PublicKeyCipher::EVP_PKEY_cipher_init_t EVP_PKEY_cipher_init,
PublicKeyCipher::EVP_PKEY_cipher_t EVP_PKEY_cipher>
bool PublicKeyCipher::Cipher(
Environment* env,
const ManagedEVPPKey& pkey,
int padding,
const EVP_MD* digest,
const ArrayBufferOrViewContents<unsigned char>& oaep_label,
const ArrayBufferOrViewContents<unsigned char>& data,
std::unique_ptr<BackingStore>* out) {
EVPKeyCtxPointer ctx(EVP_PKEY_CTX_new(pkey.get(), nullptr));
if (!ctx)
return false;
if (EVP_PKEY_cipher_init(ctx.get()) <= 0)
return false;
if (EVP_PKEY_CTX_set_rsa_padding(ctx.get(), padding) <= 0)
return false;
if (digest != nullptr) {
if (EVP_PKEY_CTX_set_rsa_oaep_md(ctx.get(), digest) <= 0)
return false;
}
if (!SetRsaOaepLabel(ctx, oaep_label.ToByteSource())) return false;
size_t out_len = 0;
if (EVP_PKEY_cipher(
ctx.get(),
nullptr,
&out_len,
data.data(),
data.size()) <= 0) {
return false;
}
{
NoArrayBufferZeroFillScope no_zero_fill_scope(env->isolate_data());
*out = ArrayBuffer::NewBackingStore(env->isolate(), out_len);
}
if (EVP_PKEY_cipher(
ctx.get(),
static_cast<unsigned char*>((*out)->Data()),
&out_len,
data.data(),
data.size()) <= 0) {
return false;
}
CHECK_LE(out_len, (*out)->ByteLength());
if (out_len > 0)
*out = BackingStore::Reallocate(env->isolate(), std::move(*out), out_len);
else
*out = ArrayBuffer::NewBackingStore(env->isolate(), 0);
return true;
}
template <PublicKeyCipher::Operation operation,
PublicKeyCipher::EVP_PKEY_cipher_init_t EVP_PKEY_cipher_init,
PublicKeyCipher::EVP_PKEY_cipher_t EVP_PKEY_cipher>
void PublicKeyCipher::Cipher(const FunctionCallbackInfo<Value>& args) {
MarkPopErrorOnReturn mark_pop_error_on_return;
Environment* env = Environment::GetCurrent(args);
unsigned int offset = 0;
ManagedEVPPKey pkey =
ManagedEVPPKey::GetPublicOrPrivateKeyFromJs(args, &offset);
if (!pkey)
return;
ArrayBufferOrViewContents<unsigned char> buf(args[offset]);
if (UNLIKELY(!buf.CheckSizeInt32()))
return THROW_ERR_OUT_OF_RANGE(env, "buffer is too long");
uint32_t padding;
if (!args[offset + 1]->Uint32Value(env->context()).To(&padding)) return;
if (EVP_PKEY_cipher == EVP_PKEY_decrypt &&
operation == PublicKeyCipher::kPrivate && padding == RSA_PKCS1_PADDING) {
EVPKeyCtxPointer ctx(EVP_PKEY_CTX_new(pkey.get(), nullptr));
CHECK(ctx);
if (EVP_PKEY_decrypt_init(ctx.get()) <= 0) {
return ThrowCryptoError(env, ERR_get_error());
}
int rsa_pkcs1_implicit_rejection =
EVP_PKEY_CTX_ctrl_str(ctx.get(), "rsa_pkcs1_implicit_rejection", "1");
// From the doc -2 means that the option is not supported.
// The default for the option is enabled and if it has been
// specifically disabled we want to respect that so we will
// not throw an error if the option is supported regardless
// of how it is set. The call to set the value
// will not affect what is used since a different context is
// used in the call if the option is supported
if (rsa_pkcs1_implicit_rejection <= 0) {
return THROW_ERR_INVALID_ARG_VALUE(
env,
"RSA_PKCS1_PADDING is no longer supported for private decryption,"
" this can be reverted with --security-revert=CVE-2024-PEND");
}
}
const EVP_MD* digest = nullptr;
if (args[offset + 2]->IsString()) {
const Utf8Value oaep_str(env->isolate(), args[offset + 2]);
digest = EVP_get_digestbyname(*oaep_str);
if (digest == nullptr)
return THROW_ERR_OSSL_EVP_INVALID_DIGEST(env);
}
ArrayBufferOrViewContents<unsigned char> oaep_label(
!args[offset + 3]->IsUndefined() ? args[offset + 3] : Local<Value>());
if (UNLIKELY(!oaep_label.CheckSizeInt32()))
return THROW_ERR_OUT_OF_RANGE(env, "oaepLabel is too big");
std::unique_ptr<BackingStore> out;
if (!Cipher<operation, EVP_PKEY_cipher_init, EVP_PKEY_cipher>(
env, pkey, padding, digest, oaep_label, buf, &out)) {
return ThrowCryptoError(env, ERR_get_error());
}
Local<ArrayBuffer> ab = ArrayBuffer::New(env->isolate(), std::move(out));
args.GetReturnValue().Set(
Buffer::New(env, ab, 0, ab->ByteLength()).FromMaybe(Local<Value>()));
}
} // namespace crypto
} // namespace node