%PDF- %PDF-
| Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/test/cctest/wasm/ |
| Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/test/cctest/wasm/wasm-run-utils.h |
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef WASM_RUN_UTILS_H
#define WASM_RUN_UTILS_H
#include <setjmp.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <array>
#include <memory>
#include "src/base/utils/random-number-generator.h"
#include "src/compiler/compiler-source-position-table.h"
#include "src/compiler/int64-lowering.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/node.h"
#include "src/compiler/wasm-compiler.h"
#include "src/trap-handler/trap-handler.h"
#include "src/wasm/canonical-types.h"
#include "src/wasm/function-body-decoder.h"
#include "src/wasm/local-decl-encoder.h"
#include "src/wasm/wasm-code-manager.h"
#include "src/wasm/wasm-external-refs.h"
#include "src/wasm/wasm-js.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/wasm/wasm-objects.h"
#include "src/wasm/wasm-opcodes.h"
#include "src/wasm/wasm-tier.h"
#include "src/zone/accounting-allocator.h"
#include "src/zone/zone.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/graph-and-builders.h"
#include "test/common/call-tester.h"
#include "test/common/value-helper.h"
#include "test/common/wasm/flag-utils.h"
namespace v8::internal::wasm {
enum class TestExecutionTier : int8_t {
kLiftoff = static_cast<int8_t>(ExecutionTier::kLiftoff),
kTurbofan = static_cast<int8_t>(ExecutionTier::kTurbofan),
kLiftoffForFuzzing
};
static_assert(
std::is_same<std::underlying_type<ExecutionTier>::type,
std::underlying_type<TestExecutionTier>::type>::value,
"enum types match");
enum TestingModuleMemoryType { kMemory32, kMemory64 };
using base::ReadLittleEndianValue;
using base::WriteLittleEndianValue;
constexpr uint32_t kMaxFunctions = 10;
constexpr uint32_t kMaxGlobalsSize = 128;
// Don't execute more than 16k steps.
constexpr int kMaxNumSteps = 16 * 1024;
using compiler::CallDescriptor;
using compiler::MachineTypeForC;
using compiler::Node;
// TODO(titzer): check traps more robustly in tests.
// Currently, in tests, we just return 0xDEADBEEF from the function in which
// the trap occurs if the runtime context is not available to throw a JavaScript
// exception.
#define CHECK_TRAP32(x) \
CHECK_EQ(0xDEADBEEF, (base::bit_cast<uint32_t>(x)) & 0xFFFFFFFF)
#define CHECK_TRAP64(x) \
CHECK_EQ(0xDEADBEEFDEADBEEF, \
(base::bit_cast<uint64_t>(x)) & 0xFFFFFFFFFFFFFFFF)
#define CHECK_TRAP(x) CHECK_TRAP32(x)
#define WASM_WRAPPER_RETURN_VALUE 8754
#define ADD_CODE(vec, ...) \
do { \
uint8_t __buf[] = {__VA_ARGS__}; \
for (size_t __i = 0; __i < sizeof(__buf); __i++) \
vec.push_back(__buf[__i]); \
} while (false)
// For tests that must manually import a JSFunction with source code.
struct ManuallyImportedJSFunction {
const FunctionSig* sig;
Handle<JSFunction> js_function;
};
// Helper Functions.
bool IsSameNan(float expected, float actual);
bool IsSameNan(double expected, double actual);
// A Wasm module builder. Globals are pre-set, however, memory and code may be
// progressively added by a test. In turn, we piecemeal update the runtime
// objects, i.e. {WasmInstanceObject} and {WasmModuleObject}.
class TestingModuleBuilder {
public:
TestingModuleBuilder(Zone*, ModuleOrigin origin, ManuallyImportedJSFunction*,
TestExecutionTier, Isolate* isolate);
~TestingModuleBuilder();
uint8_t* AddMemory(uint32_t size, SharedFlag shared = SharedFlag::kNotShared,
TestingModuleMemoryType = kMemory32);
size_t CodeTableLength() const { return native_module_->num_functions(); }
template <typename T>
T* AddMemoryElems(uint32_t count,
TestingModuleMemoryType mem_type = kMemory32) {
AddMemory(count * sizeof(T), SharedFlag::kNotShared, mem_type);
return raw_mem_start<T>();
}
template <typename T>
T* AddGlobal(ValueType type = ValueType::For(MachineTypeForC<T>())) {
const WasmGlobal* global = AddGlobal(type);
return reinterpret_cast<T*>(globals_data_ + global->offset);
}
// TODO(14034): Allow selecting type finality.
uint8_t AddSignature(const FunctionSig* sig) {
test_module_->add_signature(sig, kNoSuperType, v8_flags.wasm_final_types);
GetTypeCanonicalizer()->AddRecursiveGroup(test_module_.get(), 1);
instance_object_->set_isorecursive_canonical_types(
test_module_->isorecursive_canonical_type_ids.data());
size_t size = test_module_->types.size();
CHECK_GT(127, size);
return static_cast<uint8_t>(size - 1);
}
uint32_t mem_size() const {
CHECK_EQ(1, test_module_->memories.size());
return mem0_size_;
}
template <typename T>
T* raw_mem_start() const {
DCHECK_NOT_NULL(mem0_start_);
return reinterpret_cast<T*>(mem0_start_);
}
template <typename T>
T* raw_mem_end() const {
DCHECK_NOT_NULL(mem0_start_);
return reinterpret_cast<T*>(mem0_start_ + mem0_size_);
}
template <typename T>
T raw_mem_at(int i) {
DCHECK_NOT_NULL(mem0_start_);
return ReadMemory(&(reinterpret_cast<T*>(mem0_start_)[i]));
}
template <typename T>
T raw_val_at(int i) {
return ReadMemory(reinterpret_cast<T*>(mem0_start_ + i));
}
template <typename T>
void WriteMemory(T* p, T val) {
WriteLittleEndianValue<T>(reinterpret_cast<Address>(p), val);
}
template <typename T>
T ReadMemory(T* p) {
return ReadLittleEndianValue<T>(reinterpret_cast<Address>(p));
}
// Zero-initialize the memory.
void BlankMemory() {
uint8_t* raw = raw_mem_start<uint8_t>();
memset(raw, 0, mem0_size_);
}
// Pseudo-randomly initialize the memory.
void RandomizeMemory(unsigned int seed = 88) {
uint8_t* raw = raw_mem_start<uint8_t>();
uint8_t* end = raw_mem_end<uint8_t>();
v8::base::RandomNumberGenerator rng;
rng.SetSeed(seed);
rng.NextBytes(raw, end - raw);
}
void SetMaxMemPages(uint32_t maximum_pages) {
CHECK_EQ(1, test_module_->memories.size());
test_module_->memories[0].maximum_pages = maximum_pages;
DCHECK_EQ(instance_object_->memory_objects()->length(),
test_module_->memories.size());
instance_object_->memory_object(0)->set_maximum_pages(maximum_pages);
}
void SetMemoryShared() {
CHECK_EQ(1, test_module_->memories.size());
test_module_->memories[0].is_shared = true;
}
enum FunctionType { kImport, kWasm };
uint32_t AddFunction(const FunctionSig* sig, const char* name,
FunctionType type);
// Freezes the signature map of the module and allocates the storage for
// export wrappers.
void InitializeWrapperCache();
// Wrap the code so it can be called as a JS function.
Handle<JSFunction> WrapCode(uint32_t index);
// If function_indexes is {nullptr}, the contents of the table will be
// initialized with null functions.
void AddIndirectFunctionTable(const uint16_t* function_indexes,
uint32_t table_size,
ValueType table_type = kWasmFuncRef);
uint32_t AddBytes(base::Vector<const uint8_t> bytes);
uint32_t AddException(const FunctionSig* sig);
uint32_t AddPassiveDataSegment(base::Vector<const uint8_t> bytes);
WasmFunction* GetFunctionAt(int index) {
return &test_module_->functions[index];
}
Isolate* isolate() const { return isolate_; }
Handle<WasmInstanceObject> instance_object() const {
return instance_object_;
}
WasmCode* GetFunctionCode(uint32_t index) const {
return native_module_->GetCode(index);
}
Address globals_start() const {
return reinterpret_cast<Address>(globals_data_);
}
void SetDebugState() {
native_module_->SetDebugState(kDebugging);
execution_tier_ = TestExecutionTier::kLiftoff;
}
void SwitchToDebug() {
SetDebugState();
native_module_->RemoveCompiledCode(
NativeModule::RemoveFilter::kRemoveNonDebugCode);
}
CompilationEnv CreateCompilationEnv();
TestExecutionTier test_execution_tier() const { return execution_tier_; }
ExecutionTier execution_tier() const {
switch (execution_tier_) {
case TestExecutionTier::kTurbofan:
return ExecutionTier::kTurbofan;
case TestExecutionTier::kLiftoff:
return ExecutionTier::kLiftoff;
default:
UNREACHABLE();
}
}
void set_max_steps(int n) { max_steps_ = n; }
int* max_steps_ptr() { return &max_steps_; }
int32_t nondeterminism() { return nondeterminism_; }
int32_t* non_determinism_ptr() { return &nondeterminism_; }
void EnableFeature(WasmFeature feature) { enabled_features_.Add(feature); }
private:
std::shared_ptr<WasmModule> test_module_;
Isolate* isolate_;
WasmFeatures enabled_features_;
uint32_t global_offset = 0;
// The TestingModuleBuilder only supports one memory currently.
uint8_t* mem0_start_ = nullptr;
uint32_t mem0_size_ = 0;
uint8_t* globals_data_ = nullptr;
TestExecutionTier execution_tier_;
Handle<WasmInstanceObject> instance_object_;
NativeModule* native_module_ = nullptr;
int32_t max_steps_ = kMaxNumSteps;
int32_t nondeterminism_ = 0;
// Data segment arrays that are normally allocated on the instance.
std::vector<uint8_t> data_segment_data_;
std::vector<Address> data_segment_starts_;
std::vector<uint32_t> data_segment_sizes_;
const WasmGlobal* AddGlobal(ValueType type);
Handle<WasmInstanceObject> InitInstanceObject();
};
void TestBuildingGraph(Zone* zone, compiler::JSGraph* jsgraph,
CompilationEnv* env, const FunctionSig* sig,
compiler::SourcePositionTable* source_position_table,
const uint8_t* start, const uint8_t* end);
// A helper for compiling wasm functions for testing.
// It contains the internal state for compilation (i.e. TurboFan graph).
class WasmFunctionCompiler {
public:
~WasmFunctionCompiler();
Isolate* isolate() { return builder_->isolate(); }
uint32_t function_index() { return function_->func_index; }
uint32_t sig_index() { return function_->sig_index; }
void Build(std::initializer_list<const uint8_t> bytes) {
Build(base::VectorOf(bytes));
}
void Build(base::Vector<const uint8_t> bytes);
uint8_t AllocateLocal(ValueType type) {
uint32_t index = local_decls_.AddLocals(1, type);
uint8_t result = static_cast<uint8_t>(index);
DCHECK_EQ(index, result);
return result;
}
void SetSigIndex(int sig_index) { function_->sig_index = sig_index; }
private:
friend class WasmRunnerBase;
WasmFunctionCompiler(Zone* zone, const FunctionSig* sig,
TestingModuleBuilder* builder, const char* name);
Zone* zone_;
TestingModuleBuilder* builder_;
WasmFunction* function_;
LocalDeclEncoder local_decls_;
};
// A helper class to build a module around Wasm bytecode, generate machine
// code, and run that code.
class WasmRunnerBase : public InitializedHandleScope {
public:
WasmRunnerBase(ManuallyImportedJSFunction* maybe_import, ModuleOrigin origin,
TestExecutionTier execution_tier, int num_params,
Isolate* isolate = nullptr)
: InitializedHandleScope(isolate),
zone_(&allocator_, ZONE_NAME, kCompressGraphZone),
builder_(&zone_, origin, maybe_import, execution_tier, isolate) {}
// Builds a graph from the given Wasm code and generates the machine
// code and call wrapper for that graph. This method must not be called
// more than once.
void Build(const uint8_t* start, const uint8_t* end) {
Build(base::VectorOf(start, end - start));
}
void Build(std::initializer_list<const uint8_t> bytes) {
Build(base::VectorOf(bytes));
}
void Build(base::Vector<const uint8_t> bytes) {
CHECK(!compiled_);
compiled_ = true;
functions_[0]->Build(bytes);
}
// Resets the state for building the next function.
// The main function called will always be the first function.
template <typename ReturnType, typename... ParamTypes>
WasmFunctionCompiler& NewFunction(const char* name = nullptr) {
return NewFunction(CreateSig<ReturnType, ParamTypes...>(), name);
}
// Resets the state for building the next function.
// The main function called will be the last generated function.
// Returns the index of the previously built function.
WasmFunctionCompiler& NewFunction(const FunctionSig* sig,
const char* name = nullptr) {
functions_.emplace_back(
new WasmFunctionCompiler(&zone_, sig, &builder_, name));
uint8_t sig_index = builder().AddSignature(sig);
functions_.back()->SetSigIndex(sig_index);
return *functions_.back();
}
uint8_t AllocateLocal(ValueType type) {
return functions_[0]->AllocateLocal(type);
}
uint32_t function_index() { return functions_[0]->function_index(); }
WasmFunction* function() { return functions_[0]->function_; }
bool possible_nondeterminism() { return possible_nondeterminism_; }
TestingModuleBuilder& builder() { return builder_; }
Zone* zone() { return &zone_; }
void SwitchToDebug() { builder_.SwitchToDebug(); }
template <typename ReturnType, typename... ParamTypes>
FunctionSig* CreateSig() {
return WasmRunnerBase::CreateSig<ReturnType, ParamTypes...>(&zone_);
}
template <typename ReturnType, typename... ParamTypes>
static FunctionSig* CreateSig(Zone* zone) {
std::array<MachineType, sizeof...(ParamTypes)> param_machine_types{
{MachineTypeForC<ParamTypes>()...}};
base::Vector<MachineType> param_vec(param_machine_types.data(),
param_machine_types.size());
return CreateSig(zone, MachineTypeForC<ReturnType>(), param_vec);
}
// TODO(clemensb): Remove, use {CallViaJS} directly.
void CheckCallApplyViaJS(double expected, uint32_t function_index,
Handle<Object>* buffer, int count) {
MaybeHandle<Object> retval =
CallViaJS(function_index, base::VectorOf(buffer, count));
if (retval.is_null()) {
CHECK_EQ(expected, static_cast<double>(0xDEADBEEF));
} else {
Handle<Object> result = retval.ToHandleChecked();
if (IsSmi(*result)) {
CHECK_EQ(expected, Smi::ToInt(*result));
} else {
CHECK(IsHeapNumber(*result));
CHECK_DOUBLE_EQ(expected, HeapNumber::cast(*result)->value());
}
}
}
MaybeHandle<Object> CallViaJS(uint32_t function_index,
base::Vector<Handle<Object>> parameters) {
Isolate* isolate = main_isolate();
// Save the original context, because CEntry (for runtime calls) will
// reset / invalidate it when returning.
SaveContext save_context(isolate);
if (jsfuncs_.size() <= function_index) {
jsfuncs_.resize(function_index + 1);
}
if (jsfuncs_[function_index].is_null()) {
jsfuncs_[function_index] = builder_.WrapCode(function_index);
}
Handle<JSFunction> jsfunc = jsfuncs_[function_index];
Handle<Object> global(isolate->context()->global_object(), isolate);
return Execution::TryCall(
isolate, jsfunc, global, static_cast<int>(parameters.size()),
parameters.data(), Execution::MessageHandling::kReport, nullptr);
}
private:
static FunctionSig* CreateSig(Zone* zone, MachineType return_type,
base::Vector<MachineType> param_types);
protected:
wasm::WasmCodeRefScope code_ref_scope_;
std::vector<Handle<JSFunction>> jsfuncs_;
v8::internal::AccountingAllocator allocator_;
Zone zone_;
TestingModuleBuilder builder_;
std::vector<std::unique_ptr<WasmFunctionCompiler>> functions_;
bool compiled_ = false;
bool possible_nondeterminism_ = false;
int32_t main_fn_index_ = 0;
static void SetThreadInWasmFlag() {
*reinterpret_cast<int*>(trap_handler::GetThreadInWasmThreadLocalAddress()) =
true;
}
static void ClearThreadInWasmFlag() {
*reinterpret_cast<int*>(trap_handler::GetThreadInWasmThreadLocalAddress()) =
false;
}
};
template <typename T>
inline WasmValue WasmValueInitializer(T value) {
return WasmValue(value);
}
template <>
inline WasmValue WasmValueInitializer(int8_t value) {
return WasmValue(static_cast<int32_t>(value));
}
template <>
inline WasmValue WasmValueInitializer(int16_t value) {
return WasmValue(static_cast<int32_t>(value));
}
template <typename ReturnType, typename... ParamTypes>
class WasmRunner : public WasmRunnerBase {
public:
explicit WasmRunner(TestExecutionTier execution_tier,
ModuleOrigin origin = kWasmOrigin,
ManuallyImportedJSFunction* maybe_import = nullptr,
const char* main_fn_name = "main",
Isolate* isolate = nullptr)
: WasmRunnerBase(maybe_import, origin, execution_tier,
sizeof...(ParamTypes), isolate) {
WasmFunctionCompiler& main_fn =
NewFunction<ReturnType, ParamTypes...>(main_fn_name);
// Non-zero if there is an import.
main_fn_index_ = main_fn.function_index();
}
template <typename T>
Handle<Object> MakeParam(T t) {
Factory* factory = builder_.isolate()->factory();
if constexpr (std::is_integral_v<T> && std::is_signed_v<T> &&
sizeof(T) <= sizeof(int)) {
return factory->NewNumberFromInt(t);
}
if constexpr (std::is_integral_v<T> && std::is_unsigned_v<T> &&
sizeof(T) <= sizeof(int)) {
return factory->NewNumberFromUint(t);
}
if constexpr (std::is_same_v<T, int64_t>) {
return BigInt::FromInt64(builder_.isolate(), t);
}
if constexpr (std::is_same_v<T, uint64_t>) {
return BigInt::FromUint64(builder_.isolate(), t);
}
if constexpr (std::is_same_v<T, float>) {
return factory->NewNumber(t);
}
if constexpr (std::is_same_v<T, double>) {
return factory->NewNumber(t);
}
UNIMPLEMENTED();
}
ReturnType Call(ParamTypes... p) {
std::array<Handle<Object>, sizeof...(p)> param_objs = {MakeParam(p)...};
MaybeHandle<Object> retval =
CallViaJS(function()->func_index, base::VectorOf(param_objs));
if (retval.is_null()) {
return static_cast<ReturnType>(0xDEADBEEFDEADBEEF);
}
Handle<Object> result = retval.ToHandleChecked();
// For int64_t and uint64_t returns we will get a BigInt.
if constexpr (std::is_integral_v<ReturnType> &&
sizeof(ReturnType) == sizeof(int64_t)) {
CHECK(IsBigInt(*result));
return BigInt::cast(*result)->AsInt64();
}
// Otherwise it must be a number (Smi or HeapNumber).
CHECK(IsNumber(*result));
double value = Object::Number(*result);
// The JS API interprets all Wasm values as signed, hence we cast via the
// signed equivalent type to avoid undefined behaviour in the casting.
if constexpr (std::is_integral_v<ReturnType> &&
std::is_unsigned_v<ReturnType>) {
using signed_t = std::make_signed_t<ReturnType>;
return static_cast<ReturnType>(static_cast<signed_t>(value));
}
return static_cast<ReturnType>(value);
}
void CheckCallViaJS(double expected, ParamTypes... p) {
// TODO(clemensb): Inline into callers; use {Call} and {CHECK_EQ} directly.
ReturnType result = Call(p...);
if constexpr (std::is_floating_point_v<ReturnType>) {
if (std::isnan(result)) {
CHECK(IsSameNan(static_cast<ReturnType>(expected), result));
return;
}
}
CHECK_EQ(expected, result);
}
void CheckCallViaJSTraps(ParamTypes... p) {
std::array<Handle<Object>, sizeof...(p)> param_objs = {MakeParam(p)...};
MaybeHandle<Object> retval =
CallViaJS(function()->func_index, base::VectorOf(param_objs));
CHECK(retval.is_null());
}
void SetMaxSteps(int n) { builder_.set_max_steps(n); }
bool HasNondeterminism() { return builder_.nondeterminism(); }
};
// A macro to define tests that run in different engine configurations.
#define WASM_EXEC_TEST(name) \
void RunWasm_##name(TestExecutionTier execution_tier); \
TEST(RunWasmTurbofan_##name) { \
RunWasm_##name(TestExecutionTier::kTurbofan); \
} \
TEST(RunWasmLiftoff_##name) { RunWasm_##name(TestExecutionTier::kLiftoff); } \
void RunWasm_##name(TestExecutionTier execution_tier)
#define UNINITIALIZED_WASM_EXEC_TEST(name) \
void RunWasm_##name(TestExecutionTier execution_tier); \
UNINITIALIZED_TEST(RunWasmTurbofan_##name) { \
RunWasm_##name(TestExecutionTier::kTurbofan); \
} \
UNINITIALIZED_TEST(RunWasmLiftoff_##name) { \
RunWasm_##name(TestExecutionTier::kLiftoff); \
} \
void RunWasm_##name(TestExecutionTier execution_tier)
#define WASM_COMPILED_EXEC_TEST(name) \
void RunWasm_##name(TestExecutionTier execution_tier); \
TEST(RunWasmTurbofan_##name) { \
RunWasm_##name(TestExecutionTier::kTurbofan); \
} \
TEST(RunWasmLiftoff_##name) { RunWasm_##name(TestExecutionTier::kLiftoff); } \
void RunWasm_##name(TestExecutionTier execution_tier)
} // namespace v8::internal::wasm
#endif