%PDF- %PDF-
| Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/test/cctest/heap/ |
| Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/test/cctest/heap/heap-utils.cc |
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/cctest/heap/heap-utils.h"
#include "src/base/platform/mutex.h"
#include "src/common/assert-scope.h"
#include "src/common/globals.h"
#include "src/execution/isolate.h"
#include "src/heap/factory.h"
#include "src/heap/free-list.h"
#include "src/heap/gc-tracer-inl.h"
#include "src/heap/heap-inl.h"
#include "src/heap/heap.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/mark-compact.h"
#include "src/heap/marking-barrier.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/page-inl.h"
#include "src/heap/safepoint.h"
#include "src/heap/spaces.h"
#include "src/objects/free-space-inl.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
namespace heap {
void SealCurrentObjects(Heap* heap) {
// If you see this check failing, disable the flag at the start of your test:
// v8_flags.stress_concurrent_allocation = false;
// Background thread allocating concurrently interferes with this function.
CHECK(!v8_flags.stress_concurrent_allocation);
heap::InvokeMajorGC(heap);
heap::InvokeMajorGC(heap);
heap->EnsureSweepingCompleted(Heap::SweepingForcedFinalizationMode::kV8Only);
heap->old_space()->FreeLinearAllocationArea();
for (Page* page : *heap->old_space()) {
page->MarkNeverAllocateForTesting();
}
}
int FixedArrayLenFromSize(int size) {
return std::min({(size - FixedArray::kHeaderSize) / kTaggedSize,
FixedArray::kMaxRegularLength});
}
std::vector<Handle<FixedArray>> FillOldSpacePageWithFixedArrays(Heap* heap,
int remainder) {
PauseAllocationObserversScope pause_observers(heap);
std::vector<Handle<FixedArray>> handles;
Isolate* isolate = heap->isolate();
const int kArraySize = 128;
const int kArrayLen = heap::FixedArrayLenFromSize(kArraySize);
Handle<FixedArray> array;
int allocated = 0;
do {
if (allocated + kArraySize * 2 >
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage())) {
int size =
kArraySize * 2 -
((allocated + kArraySize * 2) -
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage())) -
remainder;
int last_array_len = heap::FixedArrayLenFromSize(size);
array = isolate->factory()->NewFixedArray(last_array_len,
AllocationType::kOld);
CHECK_EQ(size, array->Size());
allocated += array->Size() + remainder;
} else {
array =
isolate->factory()->NewFixedArray(kArrayLen, AllocationType::kOld);
allocated += array->Size();
CHECK_EQ(kArraySize, array->Size());
}
if (handles.empty()) {
// Check that allocations started on a new page.
CHECK_EQ(array->address(), Page::FromHeapObject(*array)->area_start());
}
handles.push_back(array);
} while (allocated <
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()));
return handles;
}
std::vector<Handle<FixedArray>> CreatePadding(Heap* heap, int padding_size,
AllocationType allocation,
int object_size) {
std::vector<Handle<FixedArray>> handles;
Isolate* isolate = heap->isolate();
int allocate_memory;
int length;
int free_memory = padding_size;
if (allocation == i::AllocationType::kOld) {
heap->old_space()->FreeLinearAllocationArea();
int overall_free_memory = static_cast<int>(heap->old_space()->Available());
CHECK(padding_size <= overall_free_memory || overall_free_memory == 0);
} else {
int overall_free_memory = static_cast<int>(heap->new_space()->Available());
CHECK(padding_size <= overall_free_memory || overall_free_memory == 0);
}
while (free_memory > 0) {
if (free_memory > object_size) {
allocate_memory = object_size;
length = FixedArrayLenFromSize(allocate_memory);
} else {
allocate_memory = free_memory;
length = FixedArrayLenFromSize(allocate_memory);
if (length <= 0) {
// Not enough room to create another FixedArray, so create a filler.
if (allocation == i::AllocationType::kOld) {
heap->CreateFillerObjectAt(*heap->OldSpaceAllocationTopAddress(),
free_memory);
} else {
heap->CreateFillerObjectAt(*heap->NewSpaceAllocationTopAddress(),
free_memory);
}
break;
}
}
handles.push_back(isolate->factory()->NewFixedArray(length, allocation));
CHECK((allocation == AllocationType::kYoung &&
heap->new_space()->Contains(*handles.back())) ||
(allocation == AllocationType::kOld &&
heap->InOldSpace(*handles.back())) ||
v8_flags.single_generation);
free_memory -= handles.back()->Size();
}
return handles;
}
namespace {
void FillPageInPagedSpace(Page* page,
std::vector<Handle<FixedArray>>* out_handles) {
Heap* heap = page->heap();
DCHECK(page->SweepingDone());
IsolateSafepointScope safepoint_scope(heap);
PagedSpaceBase* paged_space = static_cast<PagedSpaceBase*>(page->owner());
heap->FreeLinearAllocationAreas();
PauseAllocationObserversScope no_observers_scope(heap);
CollectionEpoch full_epoch =
heap->tracer()->CurrentEpoch(GCTracer::Scope::ScopeId::MARK_COMPACTOR);
CollectionEpoch young_epoch = heap->tracer()->CurrentEpoch(
GCTracer::Scope::ScopeId::MINOR_MARK_SWEEPER);
for (Page* p : *paged_space) {
if (p != page) paged_space->UnlinkFreeListCategories(p);
}
// If min_block_size is larger than FixedArray::kHeaderSize, all blocks in the
// free list can be used to allocate a fixed array. This guarantees that we
// can fill the whole page.
DCHECK_LT(FixedArray::kHeaderSize,
paged_space->free_list()->min_block_size());
std::vector<int> available_sizes;
// Collect all free list block sizes
page->ForAllFreeListCategories(
[&available_sizes](FreeListCategory* category) {
category->IterateNodesForTesting(
[&available_sizes](Tagged<FreeSpace> node) {
int node_size = node->Size();
if (node_size >= kMaxRegularHeapObjectSize) {
available_sizes.push_back(node_size);
}
});
});
Isolate* isolate = heap->isolate();
// Allocate as many max size arrays as possible, while making sure not to
// leave behind a block too small to fit a FixedArray.
const int max_array_length = FixedArrayLenFromSize(kMaxRegularHeapObjectSize);
for (size_t i = 0; i < available_sizes.size(); ++i) {
int available_size = available_sizes[i];
while (available_size > kMaxRegularHeapObjectSize) {
Handle<FixedArray> fixed_array = isolate->factory()->NewFixedArray(
max_array_length, AllocationType::kYoung);
if (out_handles) out_handles->push_back(fixed_array);
available_size -= kMaxRegularHeapObjectSize;
}
}
paged_space->FreeLinearAllocationArea();
// Allocate FixedArrays in remaining free list blocks, from largest
// category to smallest.
std::vector<std::vector<int>> remaining_sizes;
page->ForAllFreeListCategories(
[&remaining_sizes](FreeListCategory* category) {
remaining_sizes.push_back({});
std::vector<int>& sizes_in_category =
remaining_sizes[remaining_sizes.size() - 1];
category->IterateNodesForTesting(
[&sizes_in_category](Tagged<FreeSpace> node) {
int node_size = node->Size();
DCHECK_LT(0, FixedArrayLenFromSize(node_size));
sizes_in_category.push_back(node_size);
});
});
for (auto it = remaining_sizes.rbegin(); it != remaining_sizes.rend(); ++it) {
std::vector<int> sizes_in_category = *it;
for (int size : sizes_in_category) {
DCHECK_LE(size, kMaxRegularHeapObjectSize);
int array_length = FixedArrayLenFromSize(size);
DCHECK_LT(0, array_length);
Handle<FixedArray> fixed_array = isolate->factory()->NewFixedArray(
array_length, AllocationType::kYoung);
if (out_handles) out_handles->push_back(fixed_array);
}
}
DCHECK_EQ(0, page->AvailableInFreeList());
DCHECK_EQ(0, page->AvailableInFreeListFromAllocatedBytes());
for (Page* p : *paged_space) {
if (p != page) paged_space->RelinkFreeListCategories(p);
}
// Allocations in this method should not require a GC.
CHECK_EQ(full_epoch, heap->tracer()->CurrentEpoch(
GCTracer::Scope::ScopeId::MARK_COMPACTOR));
CHECK_EQ(young_epoch, heap->tracer()->CurrentEpoch(
GCTracer::Scope::ScopeId::MINOR_MARK_SWEEPER));
}
} // namespace
void FillCurrentPage(v8::internal::NewSpace* space,
std::vector<Handle<FixedArray>>* out_handles) {
if (v8_flags.minor_ms) {
PauseAllocationObserversScope pause_observers(space->heap());
const Address top = space->heap()->NewSpaceTop();
if (top == kNullAddress) return;
Page* page = Page::FromAllocationAreaAddress(top);
space->heap()->EnsureSweepingCompleted(
Heap::SweepingForcedFinalizationMode::kV8Only);
FillPageInPagedSpace(page, out_handles);
} else {
FillCurrentPageButNBytes(space, 0, out_handles);
}
}
namespace {
int GetSpaceRemainingOnCurrentPage(v8::internal::NewSpace* space) {
const Address top = space->heap()->NewSpaceTop();
if ((top & kPageAlignmentMask) == 0) {
// `top` points to the start of a page signifies that there is not room in
// the current page.
return 0;
}
return static_cast<int>(Page::FromAddress(top)->area_end() - top);
}
} // namespace
void FillCurrentPageButNBytes(v8::internal::NewSpace* space, int extra_bytes,
std::vector<Handle<FixedArray>>* out_handles) {
PauseAllocationObserversScope pause_observers(space->heap());
// We cannot rely on `space->limit()` to point to the end of the current page
// in the case where inline allocations are disabled, it actually points to
// the current allocation pointer.
DCHECK_IMPLIES(
!space->heap()->IsInlineAllocationEnabled(),
space->heap()->NewSpaceTop() == space->heap()->NewSpaceLimit());
int space_remaining = GetSpaceRemainingOnCurrentPage(space);
CHECK(space_remaining >= extra_bytes);
int new_linear_size = space_remaining - extra_bytes;
if (new_linear_size == 0) return;
std::vector<Handle<FixedArray>> handles = heap::CreatePadding(
space->heap(), space_remaining, i::AllocationType::kYoung);
if (out_handles != nullptr) {
out_handles->insert(out_handles->end(), handles.begin(), handles.end());
}
}
void SimulateIncrementalMarking(i::Heap* heap, bool force_completion) {
static constexpr auto kStepSize = v8::base::TimeDelta::FromMilliseconds(100);
CHECK(v8_flags.incremental_marking);
i::IncrementalMarking* marking = heap->incremental_marking();
if (heap->sweeping_in_progress()) {
IsolateSafepointScope scope(heap);
heap->EnsureSweepingCompleted(
Heap::SweepingForcedFinalizationMode::kV8Only);
}
if (marking->IsMinorMarking()) {
// If minor incremental marking is running, we need to finalize it first
// because of the AdvanceForTesting call in this function which is currently
// only possible for MajorMC.
heap->CollectGarbage(NEW_SPACE,
GarbageCollectionReason::kFinalizeConcurrentMinorMS);
}
if (marking->IsStopped()) {
heap->StartIncrementalMarking(i::GCFlag::kNoFlags,
i::GarbageCollectionReason::kTesting);
}
CHECK(marking->IsMarking());
if (!force_completion) return;
IsolateSafepointScope scope(heap);
MarkingBarrier::PublishAll(heap);
marking->MarkRootsForTesting();
while (!marking->IsMajorMarkingComplete()) {
marking->AdvanceForTesting(kStepSize);
}
}
void SimulateFullSpace(v8::internal::PagedSpace* space) {
Heap* heap = space->heap();
IsolateSafepointScope safepoint_scope(heap);
heap->FreeLinearAllocationAreas();
// If you see this check failing, disable the flag at the start of your test:
// v8_flags.stress_concurrent_allocation = false;
// Background thread allocating concurrently interferes with this function.
CHECK(!v8_flags.stress_concurrent_allocation);
if (space->heap()->sweeping_in_progress()) {
space->heap()->EnsureSweepingCompleted(
Heap::SweepingForcedFinalizationMode::kV8Only);
}
space->FreeLinearAllocationArea();
space->ResetFreeList();
}
void AbandonCurrentlyFreeMemory(PagedSpace* space) {
Heap* heap = space->heap();
IsolateSafepointScope safepoint_scope(heap);
heap->FreeLinearAllocationAreas();
space->FreeLinearAllocationArea();
for (Page* page : *space) {
page->MarkNeverAllocateForTesting();
}
}
void InvokeMajorGC(Heap* heap) {
heap->CollectGarbage(OLD_SPACE, GarbageCollectionReason::kTesting);
}
void InvokeMajorGC(Heap* heap, GCFlag gc_flag) {
heap->CollectAllGarbage(gc_flag, GarbageCollectionReason::kTesting);
}
void InvokeMinorGC(Heap* heap) {
heap->CollectGarbage(NEW_SPACE, GarbageCollectionReason::kTesting);
}
void InvokeAtomicMajorGC(Heap* heap) {
heap->PreciseCollectAllGarbage(GCFlag::kNoFlags,
GarbageCollectionReason::kTesting);
if (heap->sweeping_in_progress()) {
heap->EnsureSweepingCompleted(
Heap::SweepingForcedFinalizationMode::kUnifiedHeap);
}
}
void InvokeAtomicMinorGC(Heap* heap) {
InvokeMinorGC(heap);
if (heap->sweeping_in_progress()) {
heap->EnsureSweepingCompleted(
Heap::SweepingForcedFinalizationMode::kUnifiedHeap);
}
}
void InvokeMemoryReducingMajorGCs(Heap* heap) {
heap->CollectAllAvailableGarbage(GarbageCollectionReason::kTesting);
}
void CollectSharedGarbage(Heap* heap) {
heap->CollectGarbageShared(heap->main_thread_local_heap(),
GarbageCollectionReason::kTesting);
}
void EmptyNewSpaceUsingGC(Heap* heap) { InvokeMajorGC(heap); }
void ForceEvacuationCandidate(Page* page) {
IsolateSafepointScope safepoint(page->owner()->heap());
CHECK(v8_flags.manual_evacuation_candidates_selection);
page->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
page->owner()->heap()->FreeLinearAllocationAreas();
}
bool InCorrectGeneration(Tagged<HeapObject> object) {
return v8_flags.single_generation ? !i::Heap::InYoungGeneration(object)
: i::Heap::InYoungGeneration(object);
}
void GrowNewSpace(Heap* heap) {
IsolateSafepointScope scope(heap);
NewSpace* new_space = heap->new_space();
if (new_space->TotalCapacity() < new_space->MaximumCapacity()) {
new_space->Grow();
}
CHECK(new_space->EnsureCurrentCapacity());
}
void GrowNewSpaceToMaximumCapacity(Heap* heap) {
IsolateSafepointScope scope(heap);
NewSpace* new_space = heap->new_space();
while (new_space->TotalCapacity() < new_space->MaximumCapacity()) {
new_space->Grow();
}
CHECK(new_space->EnsureCurrentCapacity());
}
} // namespace heap
ManualGCScope::ManualGCScope(Isolate* isolate)
: isolate_(isolate),
flag_concurrent_marking_(v8_flags.concurrent_marking),
flag_concurrent_sweeping_(v8_flags.concurrent_sweeping),
flag_concurrent_minor_ms_marking_(v8_flags.concurrent_minor_ms_marking),
flag_stress_concurrent_allocation_(v8_flags.stress_concurrent_allocation),
flag_stress_incremental_marking_(v8_flags.stress_incremental_marking),
flag_parallel_marking_(v8_flags.parallel_marking),
flag_detect_ineffective_gcs_near_heap_limit_(
v8_flags.detect_ineffective_gcs_near_heap_limit),
flag_cppheap_concurrent_marking_(v8_flags.cppheap_concurrent_marking) {
// Some tests run threaded (back-to-back) and thus the GC may already be
// running by the time a ManualGCScope is created. Finalizing existing marking
// prevents any undefined/unexpected behavior.
if (isolate) {
auto* heap = isolate->heap();
if (heap->incremental_marking()->IsMarking()) {
heap::InvokeAtomicMajorGC(heap);
}
}
v8_flags.concurrent_marking = false;
v8_flags.concurrent_sweeping = false;
v8_flags.concurrent_minor_ms_marking = false;
v8_flags.stress_incremental_marking = false;
v8_flags.stress_concurrent_allocation = false;
// Parallel marking has a dependency on concurrent marking.
v8_flags.parallel_marking = false;
v8_flags.detect_ineffective_gcs_near_heap_limit = false;
// CppHeap concurrent marking has a dependency on concurrent marking.
v8_flags.cppheap_concurrent_marking = false;
if (isolate_ && isolate_->heap()->cpp_heap()) {
CppHeap::From(isolate_->heap()->cpp_heap())
->UpdateGCCapabilitiesFromFlagsForTesting();
}
}
ManualGCScope::~ManualGCScope() {
v8_flags.concurrent_marking = flag_concurrent_marking_;
v8_flags.concurrent_sweeping = flag_concurrent_sweeping_;
v8_flags.concurrent_minor_ms_marking = flag_concurrent_minor_ms_marking_;
v8_flags.stress_concurrent_allocation = flag_stress_concurrent_allocation_;
v8_flags.stress_incremental_marking = flag_stress_incremental_marking_;
v8_flags.parallel_marking = flag_parallel_marking_;
v8_flags.detect_ineffective_gcs_near_heap_limit =
flag_detect_ineffective_gcs_near_heap_limit_;
v8_flags.cppheap_concurrent_marking = flag_cppheap_concurrent_marking_;
if (isolate_ && isolate_->heap()->cpp_heap()) {
CppHeap::From(isolate_->heap()->cpp_heap())
->UpdateGCCapabilitiesFromFlagsForTesting();
}
}
} // namespace internal
} // namespace v8