%PDF- %PDF-
| Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/ |
| Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/gc-tracer.h |
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_GC_TRACER_H_
#define V8_HEAP_GC_TRACER_H_
#include "include/v8-metrics.h"
#include "src/base/compiler-specific.h"
#include "src/base/macros.h"
#include "src/base/optional.h"
#include "src/base/ring-buffer.h"
#include "src/common/globals.h"
#include "src/heap/base/bytes.h"
#include "src/init/heap-symbols.h"
#include "src/logging/counters.h"
#include "testing/gtest/include/gtest/gtest_prod.h" // nogncheck
namespace v8 {
namespace internal {
enum ScavengeSpeedMode { kForAllObjects, kForSurvivedObjects };
#define TRACE_GC_CATEGORIES \
"devtools.timeline," TRACE_DISABLED_BY_DEFAULT("v8.gc")
// Sweeping for full GC may be interleaved with sweeping for minor
// gc. The below scopes should use TRACE_GC_EPOCH to associate them
// with the right cycle.
#define TRACE_GC(tracer, scope_id) \
DCHECK_NE(GCTracer::Scope::MC_SWEEP, scope_id); \
DCHECK_NE(GCTracer::Scope::MC_BACKGROUND_SWEEPING, scope_id); \
GCTracer::Scope UNIQUE_IDENTIFIER(gc_tracer_scope)( \
tracer, GCTracer::Scope::ScopeId(scope_id), ThreadKind::kMain); \
TRACE_EVENT0(TRACE_GC_CATEGORIES, \
GCTracer::Scope::Name(GCTracer::Scope::ScopeId(scope_id)))
#define TRACE_GC_ARG1(tracer, scope_id, arg0_name, arg0_value) \
DCHECK_NE(GCTracer::Scope::MC_SWEEP, scope_id); \
DCHECK_NE(GCTracer::Scope::MC_BACKGROUND_SWEEPING, scope_id); \
GCTracer::Scope UNIQUE_IDENTIFIER(gc_tracer_scope)( \
tracer, GCTracer::Scope::ScopeId(scope_id), ThreadKind::kMain); \
TRACE_EVENT1(TRACE_GC_CATEGORIES, \
GCTracer::Scope::Name(GCTracer::Scope::ScopeId(scope_id)), \
arg0_name, arg0_value)
#define TRACE_GC_WITH_FLOW(tracer, scope_id, bind_id, flow_flags) \
DCHECK_NE(GCTracer::Scope::MC_SWEEP, scope_id); \
DCHECK_NE(GCTracer::Scope::MC_BACKGROUND_SWEEPING, scope_id); \
GCTracer::Scope UNIQUE_IDENTIFIER(gc_tracer_scope)( \
tracer, GCTracer::Scope::ScopeId(scope_id), ThreadKind::kMain); \
TRACE_EVENT_WITH_FLOW0( \
TRACE_GC_CATEGORIES, \
GCTracer::Scope::Name(GCTracer::Scope::ScopeId(scope_id)), bind_id, \
flow_flags)
#define TRACE_GC1(tracer, scope_id, thread_kind) \
GCTracer::Scope UNIQUE_IDENTIFIER(gc_tracer_scope)( \
tracer, GCTracer::Scope::ScopeId(scope_id), thread_kind); \
TRACE_EVENT0(TRACE_GC_CATEGORIES, \
GCTracer::Scope::Name(GCTracer::Scope::ScopeId(scope_id)))
#define TRACE_GC1_WITH_FLOW(tracer, scope_id, thread_kind, bind_id, \
flow_flags) \
GCTracer::Scope UNIQUE_IDENTIFIER(gc_tracer_scope)( \
tracer, GCTracer::Scope::ScopeId(scope_id), thread_kind); \
TRACE_EVENT_WITH_FLOW0( \
TRACE_GC_CATEGORIES, \
GCTracer::Scope::Name(GCTracer::Scope::ScopeId(scope_id)), bind_id, \
flow_flags)
#define TRACE_GC_EPOCH(tracer, scope_id, thread_kind) \
GCTracer::Scope UNIQUE_IDENTIFIER(gc_tracer_scope)( \
tracer, GCTracer::Scope::ScopeId(scope_id), thread_kind); \
TRACE_EVENT1(TRACE_GC_CATEGORIES, \
GCTracer::Scope::Name(GCTracer::Scope::ScopeId(scope_id)), \
"epoch", tracer->CurrentEpoch(scope_id))
#define TRACE_GC_EPOCH_WITH_FLOW(tracer, scope_id, thread_kind, bind_id, \
flow_flags) \
GCTracer::Scope UNIQUE_IDENTIFIER(gc_tracer_scope)( \
tracer, GCTracer::Scope::ScopeId(scope_id), thread_kind); \
TRACE_EVENT_WITH_FLOW1( \
TRACE_GC_CATEGORIES, \
GCTracer::Scope::Name(GCTracer::Scope::ScopeId(scope_id)), bind_id, \
flow_flags, "epoch", tracer->CurrentEpoch(scope_id))
#define TRACE_GC_NOTE(note) \
do { \
TRACE_EVENT0(TRACE_GC_CATEGORIES, note); \
} while (0)
#define TRACE_GC_NOTE_WITH_FLOW(note, bind_id, flow_flags) \
do { \
TRACE_EVENT_WITH_FLOW0(TRACE_GC_CATEGORIES, note, bind_id, flow_flags); \
} while (0)
using CollectionEpoch = uint32_t;
// GCTracer collects and prints ONE line after each garbage collector
// invocation IFF --trace_gc is used.
class V8_EXPORT_PRIVATE GCTracer {
public:
struct IncrementalInfos final {
constexpr V8_INLINE IncrementalInfos& operator+=(base::TimeDelta delta);
base::TimeDelta duration;
base::TimeDelta longest_step;
int steps = 0;
};
class V8_EXPORT_PRIVATE V8_NODISCARD Scope {
public:
enum ScopeId {
#define DEFINE_SCOPE(scope) scope,
TRACER_SCOPES(DEFINE_SCOPE) TRACER_BACKGROUND_SCOPES(DEFINE_SCOPE)
#undef DEFINE_SCOPE
NUMBER_OF_SCOPES,
FIRST_INCREMENTAL_SCOPE = MC_INCREMENTAL,
LAST_INCREMENTAL_SCOPE = MC_INCREMENTAL_SWEEPING,
FIRST_SCOPE = MC_INCREMENTAL,
NUMBER_OF_INCREMENTAL_SCOPES =
LAST_INCREMENTAL_SCOPE - FIRST_INCREMENTAL_SCOPE + 1,
FIRST_TOP_MC_SCOPE = MC_CLEAR,
LAST_TOP_MC_SCOPE = MC_SWEEP,
FIRST_BACKGROUND_SCOPE = BACKGROUND_YOUNG_ARRAY_BUFFER_SWEEP,
LAST_BACKGROUND_SCOPE = SCAVENGER_BACKGROUND_SCAVENGE_PARALLEL
};
V8_INLINE Scope(GCTracer* tracer, ScopeId scope, ThreadKind thread_kind);
V8_INLINE ~Scope();
Scope(const Scope&) = delete;
Scope& operator=(const Scope&) = delete;
static constexpr const char* Name(ScopeId id);
static constexpr bool NeedsYoungEpoch(ScopeId id);
static constexpr int IncrementalOffset(ScopeId id);
private:
GCTracer* const tracer_;
const ScopeId scope_;
const ThreadKind thread_kind_;
const base::TimeTicks start_time_;
#ifdef V8_RUNTIME_CALL_STATS
RuntimeCallTimer timer_;
RuntimeCallStats* runtime_stats_ = nullptr;
base::Optional<WorkerThreadRuntimeCallStatsScope> runtime_call_stats_scope_;
#endif // defined(V8_RUNTIME_CALL_STATS)
};
class Event {
public:
enum class Type {
SCAVENGER = 0,
MARK_COMPACTOR = 1,
INCREMENTAL_MARK_COMPACTOR = 2,
MINOR_MARK_SWEEPER = 3,
INCREMENTAL_MINOR_MARK_SWEEPER = 4,
START = 5,
};
// Returns true if the event corresponds to a young generation GC.
V8_INLINE static constexpr bool IsYoungGenerationEvent(Type type);
// The state diagram for a GC cycle:
// (NOT_RUNNING) -----(StartCycle)----->
// MARKING --(StartAtomicPause)-->
// ATOMIC ---(StopAtomicPause)-->
// SWEEPING ------(StopCycle)-----> NOT_RUNNING
enum class State { NOT_RUNNING, MARKING, ATOMIC, SWEEPING };
Event(Type type, State state, GarbageCollectionReason gc_reason,
const char* collector_reason);
// Type of the event.
Type type;
// State of the cycle corresponding to the event.
State state;
GarbageCollectionReason gc_reason;
const char* collector_reason;
// Timestamp set in the constructor.
base::TimeTicks start_time;
// Timestamp set in the destructor.
base::TimeTicks end_time;
// Memory reduction flag set.
bool reduce_memory = false;
// Size of objects in heap set in constructor.
size_t start_object_size = 0;
// Size of objects in heap set in destructor.
size_t end_object_size = 0;
// Size of memory allocated from OS set in constructor.
size_t start_memory_size = 0;
// Size of memory allocated from OS set in destructor.
size_t end_memory_size = 0;
// Total amount of space either wasted or contained in one of free lists
// before the current GC.
size_t start_holes_size = 0;
// Total amount of space either wasted or contained in one of free lists
// after the current GC.
size_t end_holes_size = 0;
// Size of young objects in constructor.
size_t young_object_size = 0;
// Size of survived young objects in destructor.
size_t survived_young_object_size = 0;
// Bytes marked incrementally for INCREMENTAL_MARK_COMPACTOR
size_t incremental_marking_bytes = 0;
// Duration (in ms) of incremental marking steps for
// INCREMENTAL_MARK_COMPACTOR.
base::TimeDelta incremental_marking_duration;
// Start/end of atomic/safepoint pause.
base::TimeTicks start_atomic_pause_time;
base::TimeTicks end_atomic_pause_time;
// Amounts of time spent in different scopes during GC.
base::TimeDelta scopes[Scope::NUMBER_OF_SCOPES];
// Holds details for incremental marking scopes.
IncrementalInfos incremental_scopes[Scope::NUMBER_OF_INCREMENTAL_SCOPES];
};
class RecordGCPhasesInfo final {
public:
RecordGCPhasesInfo(Heap* heap, GarbageCollector collector,
GarbageCollectionReason reason);
enum class Mode { None, Scavenger, Finalize };
Mode mode() const { return mode_; }
const char* trace_event_name() const { return trace_event_name_; }
// The timers are based on Gc types and the kinds of GC being invoked.
TimedHistogram* type_timer() const { return type_timer_; }
TimedHistogram* type_priority_timer() const { return type_priority_timer_; }
private:
Mode mode_;
const char* trace_event_name_;
TimedHistogram* type_timer_;
TimedHistogram* type_priority_timer_;
};
static constexpr base::TimeDelta kThroughputTimeFrame =
base::TimeDelta::FromSeconds(5);
static constexpr double kConservativeSpeedInBytesPerMillisecond = 128 * KB;
static double CombineSpeedsInBytesPerMillisecond(double default_speed,
double optional_speed);
#ifdef V8_RUNTIME_CALL_STATS
V8_INLINE static RuntimeCallCounterId RCSCounterFromScope(Scope::ScopeId id);
#endif // defined(V8_RUNTIME_CALL_STATS)
GCTracer(Heap* heap, base::TimeTicks startup_time,
GarbageCollectionReason initial_gc_reason =
GarbageCollectionReason::kUnknown);
GCTracer(const GCTracer&) = delete;
GCTracer& operator=(const GCTracer&) = delete;
V8_INLINE CollectionEpoch CurrentEpoch(Scope::ScopeId id) const;
// Start and stop an observable pause.
void StartObservablePause(base::TimeTicks time);
void StopObservablePause(GarbageCollector collector, base::TimeTicks time);
// Update the current event if it precedes the start of the observable pause.
void UpdateCurrentEvent(GarbageCollectionReason gc_reason,
const char* collector_reason);
enum class MarkingType { kAtomic, kIncremental };
// Start and stop a GC cycle (collecting data and reporting results).
void StartCycle(GarbageCollector collector, GarbageCollectionReason gc_reason,
const char* collector_reason, MarkingType marking);
void StopYoungCycleIfNeeded();
void StopFullCycleIfNeeded();
void UpdateMemoryBalancerGCSpeed();
// Start and stop a cycle's atomic pause.
void StartAtomicPause();
void StopAtomicPause();
void StartInSafepoint(base::TimeTicks time);
void StopInSafepoint(base::TimeTicks time);
void NotifyFullSweepingCompleted();
void NotifyYoungSweepingCompleted();
void NotifyFullCppGCCompleted();
void NotifyYoungCppGCRunning();
void NotifyYoungCppGCCompleted();
#ifdef DEBUG
bool IsInObservablePause() const;
bool IsInAtomicPause() const;
// Checks if the current event is consistent with a collector.
bool IsConsistentWithCollector(GarbageCollector collector) const;
// Checks if the current event corresponds to a full GC cycle whose sweeping
// has not finalized yet.
bool IsSweepingInProgress() const;
#endif
// Sample and accumulate bytes allocated since the last GC.
void SampleAllocation(base::TimeTicks current, size_t new_space_counter_bytes,
size_t old_generation_counter_bytes,
size_t embedder_counter_bytes);
void AddCompactionEvent(double duration, size_t live_bytes_compacted);
void AddSurvivalRatio(double survival_ratio);
// Log an incremental marking step.
void AddIncrementalMarkingStep(double duration, size_t bytes);
// Log an incremental marking step.
void AddIncrementalSweepingStep(double duration);
// Compute the average incremental marking speed in bytes/millisecond.
// Returns a conservative value if no events have been recorded.
double IncrementalMarkingSpeedInBytesPerMillisecond() const;
// Compute the average embedder speed in bytes/millisecond.
// Returns a conservative value if no events have been recorded.
double EmbedderSpeedInBytesPerMillisecond() const;
// Compute the average scavenge speed in bytes/millisecond.
// Returns 0 if no events have been recorded.
double ScavengeSpeedInBytesPerMillisecond(
ScavengeSpeedMode mode = kForAllObjects) const;
// Compute the average compaction speed in bytes/millisecond.
// Returns 0 if not enough events have been recorded.
double CompactionSpeedInBytesPerMillisecond() const;
// Compute the average mark-sweep speed in bytes/millisecond.
// Returns 0 if no events have been recorded.
double MarkCompactSpeedInBytesPerMillisecond() const;
// Compute the average incremental mark-sweep finalize speed in
// bytes/millisecond.
// Returns 0 if no events have been recorded.
double FinalIncrementalMarkCompactSpeedInBytesPerMillisecond() const;
// Compute the overall mark compact speed including incremental steps
// and the final mark-compact step.
double CombinedMarkCompactSpeedInBytesPerMillisecond();
// Allocation throughput in the new space in bytes/millisecond.
// Returns 0 if no allocation events have been recorded.
double NewSpaceAllocationThroughputInBytesPerMillisecond(
base::Optional<base::TimeDelta> selected_duration = base::nullopt) const;
// Allocation throughput in the old generation in bytes/millisecond in the
// last time_ms milliseconds.
// Returns 0 if no allocation events have been recorded.
double OldGenerationAllocationThroughputInBytesPerMillisecond(
base::Optional<base::TimeDelta> selected_duration = base::nullopt) const;
// Allocation throughput in the embedder in bytes/millisecond in the
// last time_ms milliseconds.
// Returns 0 if no allocation events have been recorded.
double EmbedderAllocationThroughputInBytesPerMillisecond(
base::Optional<base::TimeDelta> selected_duration = base::nullopt) const;
// Allocation throughput in heap in bytes/millisecond in the last time_ms
// milliseconds.
// Returns 0 if no allocation events have been recorded.
double AllocationThroughputInBytesPerMillisecond(
base::Optional<base::TimeDelta> selected_duration) const;
// Allocation throughput in heap in bytes/milliseconds in the last
// kThroughputTimeFrameMs seconds.
// Returns 0 if no allocation events have been recorded.
double CurrentAllocationThroughputInBytesPerMillisecond() const;
// Allocation throughput in old generation in bytes/milliseconds in the last
// kThroughputTimeFrameMs seconds.
// Returns 0 if no allocation events have been recorded.
double CurrentOldGenerationAllocationThroughputInBytesPerMillisecond() const;
// Allocation throughput in the embedder in bytes/milliseconds in the last
// kThroughputTimeFrameMs seconds.
// Returns 0 if no allocation events have been recorded.
double CurrentEmbedderAllocationThroughputInBytesPerMillisecond() const;
// Computes the average survival ratio based on the last recorded survival
// events.
// Returns 0 if no events have been recorded.
double AverageSurvivalRatio() const;
// Returns true if at least one survival event was recorded.
bool SurvivalEventsRecorded() const;
// Discard all recorded survival events.
void ResetSurvivalEvents();
void NotifyIncrementalMarkingStart();
// Invoked when starting marking - either incremental or as part of the atomic
// pause. Used for computing/updating code flushing increase.
void NotifyMarkingStart();
// Returns the current cycle's code flushing increase in seconds.
uint16_t CodeFlushingIncrease() const;
// Returns average mutator utilization with respect to mark-compact
// garbage collections. This ignores scavenger.
double AverageMarkCompactMutatorUtilization() const;
double CurrentMarkCompactMutatorUtilization() const;
V8_INLINE void AddScopeSample(Scope::ScopeId id, base::TimeDelta duration);
void RecordGCPhasesHistograms(RecordGCPhasesInfo::Mode mode);
void RecordEmbedderSpeed(size_t bytes, double duration);
// Returns the average time between scheduling and invocation of an
// incremental marking task.
base::Optional<base::TimeDelta> AverageTimeToIncrementalMarkingTask() const;
void RecordTimeToIncrementalMarkingTask(base::TimeDelta time_to_task);
#ifdef V8_RUNTIME_CALL_STATS
V8_INLINE WorkerThreadRuntimeCallStats* worker_thread_runtime_call_stats();
#endif // defined(V8_RUNTIME_CALL_STATS)
GarbageCollector GetCurrentCollector() const;
private:
using BytesAndDurationBuffer = ::heap::base::BytesAndDurationBuffer;
struct BackgroundCounter {
double total_duration_ms;
};
void StopCycle(GarbageCollector collector);
// Statistics for background scopes are kept out of the current event and only
// copied there via FetchBackgroundCounters(). This method here is thread-safe
// but may return out-of-date numbers as it only considers data from the
// current Event.
V8_INLINE double current_scope(Scope::ScopeId id) const;
V8_INLINE constexpr const IncrementalInfos& incremental_scope(
Scope::ScopeId id) const;
void ResetForTesting();
void RecordIncrementalMarkingSpeed(size_t bytes, base::TimeDelta duration);
void RecordMutatorUtilization(base::TimeTicks mark_compactor_end_time,
base::TimeDelta mark_compactor_duration);
// Update counters for an entire full GC cycle. Exact accounting of events
// within a GC is not necessary which is why the recording takes place at the
// end of the atomic pause.
void RecordGCSumCounters();
// Print one detailed trace line in name=value format.
// TODO(ernstm): Move to Heap.
void PrintNVP() const;
// Print one trace line.
// TODO(ernstm): Move to Heap.
void Print() const;
// Prints a line and also adds it to the heap's ring buffer so that
// it can be included in later crash dumps.
void PRINTF_FORMAT(2, 3) Output(const char* format, ...) const;
void FetchBackgroundCounters();
void ReportFullCycleToRecorder();
void ReportIncrementalMarkingStepToRecorder(double v8_duration);
void ReportIncrementalSweepingStepToRecorder(double v8_duration);
void ReportYoungCycleToRecorder();
// Pointer to the heap that owns this tracer.
Heap* heap_;
// Current tracer event. Populated during Start/Stop cycle. Valid after Stop()
// has returned.
Event current_;
// Previous tracer event.
Event previous_;
// The starting time of the observable pause if set.
base::Optional<base::TimeTicks> start_of_observable_pause_;
// We need two epochs, since there can be scavenges during incremental
// marking.
CollectionEpoch epoch_young_ = 0;
CollectionEpoch epoch_full_ = 0;
// Size of incremental marking steps (in bytes) accumulated since the end of
// the last mark compact GC.
size_t incremental_marking_bytes_ = 0;
// Duration of incremental marking steps since the end of the last
// mark-compact event.
base::TimeDelta incremental_marking_duration_;
base::TimeTicks incremental_marking_start_time_;
double recorded_incremental_marking_speed_ = 0.0;
base::Optional<base::TimeDelta> average_time_to_incremental_marking_task_;
double recorded_embedder_speed_ = 0.0;
base::Optional<base::TimeTicks> last_marking_start_time_;
uint16_t code_flushing_increase_s_ = 0;
// Incremental scopes carry more information than just the duration. The infos
// here are merged back upon starting/stopping the GC tracer.
IncrementalInfos incremental_scopes_[Scope::NUMBER_OF_INCREMENTAL_SCOPES];
// Timestamp and allocation counter at the last sampled allocation event.
base::TimeTicks allocation_time_;
size_t new_space_allocation_counter_bytes_ = 0;
size_t old_generation_allocation_counter_bytes_ = 0;
size_t embedder_allocation_counter_bytes_ = 0;
double combined_mark_compact_speed_cache_ = 0.0;
// Used for computing average mutator utilization.
double average_mutator_duration_ = 0.0;
double average_mark_compact_duration_ = 0.0;
double current_mark_compact_mutator_utilization_ = 1.0;
// The end of the last mark-compact GC. Is set to isolate/heap setup time
// before the first one.
base::TimeTicks previous_mark_compact_end_time_;
BytesAndDurationBuffer recorded_minor_gcs_total_;
BytesAndDurationBuffer recorded_minor_gcs_survived_;
BytesAndDurationBuffer recorded_compactions_;
BytesAndDurationBuffer recorded_incremental_mark_compacts_;
BytesAndDurationBuffer recorded_mark_compacts_;
BytesAndDurationBuffer recorded_new_generation_allocations_;
BytesAndDurationBuffer recorded_old_generation_allocations_;
BytesAndDurationBuffer recorded_embedder_generation_allocations_;
base::RingBuffer<double> recorded_survival_ratios_;
// A full GC cycle stops only when both v8 and cppgc (if available) GCs have
// finished sweeping.
bool notified_full_sweeping_completed_ = false;
bool notified_full_cppgc_completed_ = false;
bool full_cppgc_completed_during_minor_gc_ = false;
bool notified_young_sweeping_completed_ = false;
// Similar to full GCs, a young GC cycle stops only when both v8 and cppgc GCs
// have finished sweeping.
bool notified_young_cppgc_completed_ = false;
// Keep track whether the young cppgc GC was scheduled (as opposed to full
// cycles, for young cycles cppgc is not always scheduled).
bool notified_young_cppgc_running_ = false;
// When a full GC cycle is interrupted by a young generation GC cycle, the
// |previous_| event is used as temporary storage for the |current_| event
// that corresponded to the full GC cycle, and this field is set to true.
bool young_gc_while_full_gc_ = false;
v8::metrics::GarbageCollectionFullMainThreadBatchedIncrementalMark
incremental_mark_batched_events_;
v8::metrics::GarbageCollectionFullMainThreadBatchedIncrementalSweep
incremental_sweep_batched_events_;
mutable base::Mutex background_scopes_mutex_;
base::TimeDelta background_scopes_[Scope::NUMBER_OF_SCOPES];
FRIEND_TEST(GCTracerTest, AllocationThroughput);
FRIEND_TEST(GCTracerTest, BackgroundScavengerScope);
FRIEND_TEST(GCTracerTest, BackgroundMinorMSScope);
FRIEND_TEST(GCTracerTest, BackgroundMajorMCScope);
FRIEND_TEST(GCTracerTest, EmbedderAllocationThroughput);
FRIEND_TEST(GCTracerTest, MultithreadedBackgroundScope);
FRIEND_TEST(GCTracerTest, NewSpaceAllocationThroughput);
FRIEND_TEST(GCTracerTest, PerGenerationAllocationThroughput);
FRIEND_TEST(GCTracerTest, PerGenerationAllocationThroughputWithProvidedTime);
FRIEND_TEST(GCTracerTest, RegularScope);
FRIEND_TEST(GCTracerTest, IncrementalMarkingDetails);
FRIEND_TEST(GCTracerTest, IncrementalScope);
FRIEND_TEST(GCTracerTest, IncrementalMarkingSpeed);
FRIEND_TEST(GCTracerTest, MutatorUtilization);
FRIEND_TEST(GCTracerTest, RecordMarkCompactHistograms);
FRIEND_TEST(GCTracerTest, RecordScavengerHistograms);
};
const char* ToString(GCTracer::Event::Type type, bool short_name);
} // namespace internal
} // namespace v8
#endif // V8_HEAP_GC_TRACER_H_