%PDF- %PDF-
| Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/execution/ppc/ |
| Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/execution/ppc/simulator-ppc.cc |
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/execution/ppc/simulator-ppc.h"
#if defined(USE_SIMULATOR)
#include <stdarg.h>
#include <stdlib.h>
#include <cmath>
#include "src/base/bits.h"
#include "src/base/lazy-instance.h"
#include "src/base/overflowing-math.h"
#include "src/base/platform/memory.h"
#include "src/base/platform/platform.h"
#include "src/codegen/assembler.h"
#include "src/codegen/macro-assembler.h"
#include "src/codegen/ppc/constants-ppc.h"
#include "src/codegen/register-configuration.h"
#include "src/diagnostics/disasm.h"
#include "src/execution/ppc/frame-constants-ppc.h"
#include "src/heap/combined-heap.h"
#include "src/heap/heap-inl.h" // For CodeSpaceMemoryModificationScope.
#include "src/objects/objects-inl.h"
#include "src/runtime/runtime-utils.h"
#include "src/utils/ostreams.h"
// Only build the simulator if not compiling for real PPC hardware.
namespace v8 {
namespace internal {
DEFINE_LAZY_LEAKY_OBJECT_GETTER(Simulator::GlobalMonitor,
Simulator::GlobalMonitor::Get)
// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent way through
// ::v8::internal::OS in the same way as SNPrintF is that the
// Windows C Run-Time Library does not provide vsscanf.
#define SScanF sscanf
// The PPCDebugger class is used by the simulator while debugging simulated
// PowerPC code.
class PPCDebugger {
public:
explicit PPCDebugger(Simulator* sim) : sim_(sim) {}
void Debug();
private:
static const Instr kBreakpointInstr = (TWI | 0x1F * B21);
static const Instr kNopInstr = (ORI); // ori, 0,0,0
Simulator* sim_;
intptr_t GetRegisterValue(int regnum);
double GetRegisterPairDoubleValue(int regnum);
double GetFPDoubleRegisterValue(int regnum);
bool GetValue(const char* desc, intptr_t* value);
bool GetFPDoubleValue(const char* desc, double* value);
// Set or delete breakpoint (there can be only one).
bool SetBreakpoint(Instruction* break_pc);
void DeleteBreakpoint();
// Undo and redo the breakpoint. This is needed to bracket disassembly and
// execution to skip past the breakpoint when run from the debugger.
void UndoBreakpoint();
void RedoBreakpoint();
};
void Simulator::DebugAtNextPC() {
PrintF("Starting debugger on the next instruction:\n");
set_pc(get_pc() + kInstrSize);
PPCDebugger(this).Debug();
}
intptr_t PPCDebugger::GetRegisterValue(int regnum) {
return sim_->get_register(regnum);
}
double PPCDebugger::GetRegisterPairDoubleValue(int regnum) {
return sim_->get_double_from_register_pair(regnum);
}
double PPCDebugger::GetFPDoubleRegisterValue(int regnum) {
return sim_->get_double_from_d_register(regnum);
}
bool PPCDebugger::GetValue(const char* desc, intptr_t* value) {
int regnum = Registers::Number(desc);
if (regnum != kNoRegister) {
*value = GetRegisterValue(regnum);
return true;
}
if (strncmp(desc, "0x", 2) == 0) {
return SScanF(desc + 2, "%" V8PRIxPTR,
reinterpret_cast<uintptr_t*>(value)) == 1;
}
return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) == 1;
}
bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) {
int regnum = DoubleRegisters::Number(desc);
if (regnum != kNoRegister) {
*value = sim_->get_double_from_d_register(regnum);
return true;
}
return false;
}
bool PPCDebugger::SetBreakpoint(Instruction* break_pc) {
// Check if a breakpoint can be set. If not return without any side-effects.
if (sim_->break_pc_ != nullptr) {
return false;
}
// Set the breakpoint.
sim_->break_pc_ = break_pc;
sim_->break_instr_ = break_pc->InstructionBits();
// Not setting the breakpoint instruction in the code itself. It will be set
// when the debugger shell continues.
return true;
}
namespace {
// This function is dangerous, but it's only available in non-production
// (simulator) builds.
void SetInstructionBitsInCodeSpace(Instruction* instr, Instr value,
Heap* heap) {
CodePageMemoryModificationScope scope(
MemoryChunk::FromAddress(reinterpret_cast<Address>(instr)));
instr->SetInstructionBits(value);
}
} // namespace
void PPCDebugger::DeleteBreakpoint() {
UndoBreakpoint();
sim_->break_pc_ = nullptr;
sim_->break_instr_ = 0;
}
void PPCDebugger::UndoBreakpoint() {
if (sim_->break_pc_ != nullptr) {
SetInstructionBitsInCodeSpace(sim_->break_pc_, sim_->break_instr_,
sim_->isolate_->heap());
}
}
void PPCDebugger::RedoBreakpoint() {
if (sim_->break_pc_ != nullptr) {
SetInstructionBitsInCodeSpace(sim_->break_pc_, kBreakpointInstr,
sim_->isolate_->heap());
}
}
void PPCDebugger::Debug() {
if (v8_flags.correctness_fuzzer_suppressions) {
PrintF("Debugger disabled for differential fuzzing.\n");
return;
}
intptr_t last_pc = -1;
bool done = false;
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
char* argv[3] = {cmd, arg1, arg2};
// make sure to have a proper terminating character if reaching the limit
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
// Unset breakpoint while running in the debugger shell, making it invisible
// to all commands.
UndoBreakpoint();
// Disable tracing while simulating
bool trace = v8_flags.trace_sim;
v8_flags.trace_sim = false;
while (!done && !sim_->has_bad_pc()) {
if (last_pc != sim_->get_pc()) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::base::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer,
reinterpret_cast<uint8_t*>(sim_->get_pc()));
PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.begin());
last_pc = sim_->get_pc();
}
char* line = ReadLine("sim> ");
if (line == nullptr) {
break;
} else {
char* last_input = sim_->last_debugger_input();
if (strcmp(line, "\n") == 0 && last_input != nullptr) {
line = last_input;
} else {
// Ownership is transferred to sim_;
sim_->set_last_debugger_input(line);
}
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int argc = SScanF(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
intptr_t value;
// If at a breakpoint, proceed past it.
if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
->InstructionBits() == 0x7D821008) {
sim_->set_pc(sim_->get_pc() + kInstrSize);
} else {
sim_->ExecuteInstruction(
reinterpret_cast<Instruction*>(sim_->get_pc()));
}
if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
for (int i = 1; i < value; i++) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::base::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer,
reinterpret_cast<uint8_t*>(sim_->get_pc()));
PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(),
buffer.begin());
sim_->ExecuteInstruction(
reinterpret_cast<Instruction*>(sim_->get_pc()));
}
}
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// If at a breakpoint, proceed past it.
if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
->InstructionBits() == 0x7D821008) {
sim_->set_pc(sim_->get_pc() + kInstrSize);
} else {
// Execute the one instruction we broke at with breakpoints disabled.
sim_->ExecuteInstruction(
reinterpret_cast<Instruction*>(sim_->get_pc()));
}
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
intptr_t value;
double dvalue;
if (strcmp(arg1, "all") == 0) {
for (int i = 0; i < kNumRegisters; i++) {
value = GetRegisterValue(i);
PrintF(" %3s: %08" V8PRIxPTR,
RegisterName(Register::from_code(i)), value);
if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
(i % 2) == 0) {
dvalue = GetRegisterPairDoubleValue(i);
PrintF(" (%f)\n", dvalue);
} else if (i != 0 && !((i + 1) & 3)) {
PrintF("\n");
}
}
PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
" "
"ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
sim_->special_reg_pc_, sim_->special_reg_lr_,
sim_->special_reg_ctr_, sim_->special_reg_xer_,
sim_->condition_reg_);
} else if (strcmp(arg1, "alld") == 0) {
for (int i = 0; i < kNumRegisters; i++) {
value = GetRegisterValue(i);
PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
RegisterName(Register::from_code(i)), value, value);
if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
(i % 2) == 0) {
dvalue = GetRegisterPairDoubleValue(i);
PrintF(" (%f)\n", dvalue);
} else if (!((i + 1) % 2)) {
PrintF("\n");
}
}
PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
" "
"ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
sim_->special_reg_pc_, sim_->special_reg_lr_,
sim_->special_reg_ctr_, sim_->special_reg_xer_,
sim_->condition_reg_);
} else if (strcmp(arg1, "allf") == 0) {
for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
dvalue = GetFPDoubleRegisterValue(i);
uint64_t as_words = base::bit_cast<uint64_t>(dvalue);
PrintF("%3s: %f 0x%08x %08x\n",
RegisterName(DoubleRegister::from_code(i)), dvalue,
static_cast<uint32_t>(as_words >> 32),
static_cast<uint32_t>(as_words & 0xFFFFFFFF));
}
} else if (arg1[0] == 'r' &&
(arg1[1] >= '0' && arg1[1] <= '9' &&
(arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' &&
arg1[3] == '\0')))) {
int regnum = strtoul(&arg1[1], 0, 10);
if (regnum != kNoRegister) {
value = GetRegisterValue(regnum);
PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
value);
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
if (GetValue(arg1, &value)) {
PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
value);
} else if (GetFPDoubleValue(arg1, &dvalue)) {
uint64_t as_words = base::bit_cast<uint64_t>(dvalue);
PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
static_cast<uint32_t>(as_words >> 32),
static_cast<uint32_t>(as_words & 0xFFFFFFFF));
} else {
PrintF("%s unrecognized\n", arg1);
}
}
} else {
PrintF("print <register>\n");
}
} else if ((strcmp(cmd, "po") == 0) ||
(strcmp(cmd, "printobject") == 0)) {
if (argc == 2) {
intptr_t value;
StdoutStream os;
if (GetValue(arg1, &value)) {
Tagged<Object> obj(value);
os << arg1 << ": \n";
#ifdef DEBUG
Print(obj, os);
os << "\n";
#else
os << Brief(obj) << "\n";
#endif
} else {
os << arg1 << " unrecognized\n";
}
} else {
PrintF("printobject <value>\n");
}
} else if (strcmp(cmd, "setpc") == 0) {
intptr_t value;
if (!GetValue(arg1, &value)) {
PrintF("%s unrecognized\n", arg1);
continue;
}
sim_->set_pc(value);
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0 ||
strcmp(cmd, "dump") == 0) {
intptr_t* cur = nullptr;
intptr_t* end = nullptr;
int next_arg = 1;
if (strcmp(cmd, "stack") == 0) {
cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
} else { // "mem"
intptr_t value;
if (!GetValue(arg1, &value)) {
PrintF("%s unrecognized\n", arg1);
continue;
}
cur = reinterpret_cast<intptr_t*>(value);
next_arg++;
}
intptr_t words; // likely inaccurate variable name for 64bit
if (argc == next_arg) {
words = 10;
} else {
if (!GetValue(argv[next_arg], &words)) {
words = 10;
}
}
end = cur + words;
bool skip_obj_print = (strcmp(cmd, "dump") == 0);
while (cur < end) {
PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR,
reinterpret_cast<intptr_t>(cur), *cur, *cur);
Tagged<Object> obj(*cur);
Heap* current_heap = sim_->isolate_->heap();
if (!skip_obj_print) {
if (IsSmi(obj) ||
IsValidHeapObject(current_heap, HeapObject::cast(obj))) {
PrintF(" (");
if (IsSmi(obj)) {
PrintF("smi %d", Smi::ToInt(obj));
} else {
ShortPrint(obj);
}
PrintF(")");
}
}
PrintF("\n");
cur++;
}
} else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::base::EmbeddedVector<char, 256> buffer;
uint8_t* prev = nullptr;
uint8_t* cur = nullptr;
uint8_t* end = nullptr;
if (argc == 1) {
cur = reinterpret_cast<uint8_t*>(sim_->get_pc());
end = cur + (10 * kInstrSize);
} else if (argc == 2) {
int regnum = Registers::Number(arg1);
if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
// The argument is an address or a register name.
intptr_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<uint8_t*>(value);
// Disassemble 10 instructions at <arg1>.
end = cur + (10 * kInstrSize);
}
} else {
// The argument is the number of instructions.
intptr_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<uint8_t*>(sim_->get_pc());
// Disassemble <arg1> instructions.
end = cur + (value * kInstrSize);
}
}
} else {
intptr_t value1;
intptr_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<uint8_t*>(value1);
end = cur + (value2 * kInstrSize);
}
}
while (cur < end) {
prev = cur;
cur += dasm.InstructionDecode(buffer, cur);
PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
buffer.begin());
}
} else if (strcmp(cmd, "gdb") == 0) {
PrintF("relinquishing control to gdb\n");
v8::base::OS::DebugBreak();
PrintF("regaining control from gdb\n");
} else if (strcmp(cmd, "break") == 0) {
if (argc == 2) {
intptr_t value;
if (GetValue(arg1, &value)) {
if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
PrintF("setting breakpoint failed\n");
}
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("break <address>\n");
}
} else if (strcmp(cmd, "del") == 0) {
DeleteBreakpoint();
} else if (strcmp(cmd, "cr") == 0) {
PrintF("Condition reg: %08x\n", sim_->condition_reg_);
} else if (strcmp(cmd, "lr") == 0) {
PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_);
} else if (strcmp(cmd, "ctr") == 0) {
PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_);
} else if (strcmp(cmd, "xer") == 0) {
PrintF("XER: %08x\n", sim_->special_reg_xer_);
} else if (strcmp(cmd, "fpscr") == 0) {
PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_);
} else if (strcmp(cmd, "stop") == 0) {
intptr_t value;
intptr_t stop_pc = sim_->get_pc() - (kInstrSize + kSystemPointerSize);
Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
Instruction* msg_address =
reinterpret_cast<Instruction*>(stop_pc + kInstrSize);
if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
// Remove the current stop.
if (sim_->isStopInstruction(stop_instr)) {
SetInstructionBitsInCodeSpace(stop_instr, kNopInstr,
sim_->isolate_->heap());
msg_address->SetInstructionBits(kNopInstr);
} else {
PrintF("Not at debugger stop.\n");
}
} else if (argc == 3) {
// Print information about all/the specified breakpoint(s).
if (strcmp(arg1, "info") == 0) {
if (strcmp(arg2, "all") == 0) {
PrintF("Stop information:\n");
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->PrintStopInfo(i);
}
} else if (GetValue(arg2, &value)) {
sim_->PrintStopInfo(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "enable") == 0) {
// Enable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->EnableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->EnableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "disable") == 0) {
// Disable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->DisableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->DisableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
}
} else {
PrintF("Wrong usage. Use help command for more information.\n");
}
} else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
v8_flags.trace_sim = !v8_flags.trace_sim;
PrintF("Trace of executed instructions is %s\n",
v8_flags.trace_sim ? "on" : "off");
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
PrintF("cont\n");
PrintF(" continue execution (alias 'c')\n");
PrintF("stepi [num instructions]\n");
PrintF(" step one/num instruction(s) (alias 'si')\n");
PrintF("print <register>\n");
PrintF(" print register content (alias 'p')\n");
PrintF(" use register name 'all' to display all integer registers\n");
PrintF(
" use register name 'alld' to display integer registers "
"with decimal values\n");
PrintF(" use register name 'rN' to display register number 'N'\n");
PrintF(" add argument 'fp' to print register pair double values\n");
PrintF(
" use register name 'allf' to display floating-point "
"registers\n");
PrintF("printobject <register>\n");
PrintF(" print an object from a register (alias 'po')\n");
PrintF("cr\n");
PrintF(" print condition register\n");
PrintF("lr\n");
PrintF(" print link register\n");
PrintF("ctr\n");
PrintF(" print ctr register\n");
PrintF("xer\n");
PrintF(" print XER\n");
PrintF("fpscr\n");
PrintF(" print FPSCR\n");
PrintF("stack [<num words>]\n");
PrintF(" dump stack content, default dump 10 words)\n");
PrintF("mem <address> [<num words>]\n");
PrintF(" dump memory content, default dump 10 words)\n");
PrintF("dump [<words>]\n");
PrintF(
" dump memory content without pretty printing JS objects, default "
"dump 10 words)\n");
PrintF("disasm [<instructions>]\n");
PrintF("disasm [<address/register>]\n");
PrintF("disasm [[<address/register>] <instructions>]\n");
PrintF(" disassemble code, default is 10 instructions\n");
PrintF(" from pc (alias 'di')\n");
PrintF("gdb\n");
PrintF(" enter gdb\n");
PrintF("break <address>\n");
PrintF(" set a break point on the address\n");
PrintF("del\n");
PrintF(" delete the breakpoint\n");
PrintF("trace (alias 't')\n");
PrintF(" toogle the tracing of all executed statements\n");
PrintF("stop feature:\n");
PrintF(" Description:\n");
PrintF(" Stops are debug instructions inserted by\n");
PrintF(" the Assembler::stop() function.\n");
PrintF(" When hitting a stop, the Simulator will\n");
PrintF(" stop and give control to the PPCDebugger.\n");
PrintF(" The first %d stop codes are watched:\n",
Simulator::kNumOfWatchedStops);
PrintF(" - They can be enabled / disabled: the Simulator\n");
PrintF(" will / won't stop when hitting them.\n");
PrintF(" - The Simulator keeps track of how many times they \n");
PrintF(" are met. (See the info command.) Going over a\n");
PrintF(" disabled stop still increases its counter. \n");
PrintF(" Commands:\n");
PrintF(" stop info all/<code> : print infos about number <code>\n");
PrintF(" or all stop(s).\n");
PrintF(" stop enable/disable all/<code> : enables / disables\n");
PrintF(" all or number <code> stop(s)\n");
PrintF(" stop unstop\n");
PrintF(" ignore the stop instruction at the current location\n");
PrintF(" from now on\n");
} else {
PrintF("Unknown command: %s\n", cmd);
}
}
}
// Reinstall breakpoint to stop execution and enter the debugger shell when
// hit.
RedoBreakpoint();
// Restore tracing
v8_flags.trace_sim = trace;
#undef COMMAND_SIZE
#undef ARG_SIZE
#undef STR
#undef XSTR
}
bool Simulator::ICacheMatch(void* one, void* two) {
DCHECK_EQ(reinterpret_cast<intptr_t>(one) & CachePage::kPageMask, 0);
DCHECK_EQ(reinterpret_cast<intptr_t>(two) & CachePage::kPageMask, 0);
return one == two;
}
static uint32_t ICacheHash(void* key) {
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
}
static bool AllOnOnePage(uintptr_t start, int size) {
intptr_t start_page = (start & ~CachePage::kPageMask);
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
return start_page == end_page;
}
static bool is_snan(float input) {
uint32_t kQuietNanFPBit = 1 << 22;
uint32_t InputAsUint = base::bit_cast<uint32_t>(input);
return isnan(input) && ((InputAsUint & kQuietNanFPBit) == 0);
}
static bool is_snan(double input) {
uint64_t kQuietNanDPBit = 1L << 51;
uint64_t InputAsUint = base::bit_cast<uint64_t>(input);
return isnan(input) && ((InputAsUint & kQuietNanDPBit) == 0);
}
void Simulator::set_last_debugger_input(char* input) {
DeleteArray(last_debugger_input_);
last_debugger_input_ = input;
}
void Simulator::SetRedirectInstruction(Instruction* instruction) {
instruction->SetInstructionBits(rtCallRedirInstr | kCallRtRedirected);
}
void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
void* start_addr, size_t size) {
intptr_t start = reinterpret_cast<intptr_t>(start_addr);
int intra_line = (start & CachePage::kLineMask);
start -= intra_line;
size += intra_line;
size = ((size - 1) | CachePage::kLineMask) + 1;
int offset = (start & CachePage::kPageMask);
while (!AllOnOnePage(start, size - 1)) {
int bytes_to_flush = CachePage::kPageSize - offset;
FlushOnePage(i_cache, start, bytes_to_flush);
start += bytes_to_flush;
size -= bytes_to_flush;
DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
offset = 0;
}
if (size != 0) {
FlushOnePage(i_cache, start, size);
}
}
CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
void* page) {
base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
if (entry->value == nullptr) {
CachePage* new_page = new CachePage();
entry->value = new_page;
}
return reinterpret_cast<CachePage*>(entry->value);
}
// Flush from start up to and not including start + size.
void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
intptr_t start, int size) {
DCHECK_LE(size, CachePage::kPageSize);
DCHECK(AllOnOnePage(start, size - 1));
DCHECK_EQ(start & CachePage::kLineMask, 0);
DCHECK_EQ(size & CachePage::kLineMask, 0);
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
int offset = (start & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* valid_bytemap = cache_page->ValidityByte(offset);
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}
void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
Instruction* instr) {
intptr_t address = reinterpret_cast<intptr_t>(instr);
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
int offset = (address & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* cache_valid_byte = cache_page->ValidityByte(offset);
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
if (cache_hit) {
// Check that the data in memory matches the contents of the I-cache.
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr),
cache_page->CachedData(offset), kInstrSize));
} else {
// Cache miss. Load memory into the cache.
memcpy(cached_line, line, CachePage::kLineLength);
*cache_valid_byte = CachePage::LINE_VALID;
}
}
Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
// Set up simulator support first. Some of this information is needed to
// setup the architecture state.
stack_ = reinterpret_cast<uint8_t*>(base::Malloc(AllocatedStackSize()));
pc_modified_ = false;
icount_ = 0;
break_pc_ = nullptr;
break_instr_ = 0;
// Set up architecture state.
// All registers are initialized to zero to start with.
for (int i = 0; i < kNumGPRs; i++) {
registers_[i] = 0;
}
condition_reg_ = 0;
fp_condition_reg_ = 0;
special_reg_pc_ = 0;
special_reg_lr_ = 0;
special_reg_ctr_ = 0;
// Initializing FP registers.
for (int i = 0; i < kNumFPRs; i++) {
fp_registers_[i] = 0.0;
}
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area. To be safe in potential stack underflows we leave
// some buffer below.
registers_[sp] = reinterpret_cast<intptr_t>(stack_) + UsableStackSize();
last_debugger_input_ = nullptr;
}
Simulator::~Simulator() { base::Free(stack_); }
// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
v8::internal::Isolate::PerIsolateThreadData* isolate_data =
isolate->FindOrAllocatePerThreadDataForThisThread();
DCHECK_NOT_NULL(isolate_data);
Simulator* sim = isolate_data->simulator();
if (sim == nullptr) {
// TODO(146): delete the simulator object when a thread/isolate goes away.
sim = new Simulator(isolate);
isolate_data->set_simulator(sim);
}
return sim;
}
// Sets the register in the architecture state.
void Simulator::set_register(int reg, intptr_t value) {
DCHECK((reg >= 0) && (reg < kNumGPRs));
registers_[reg] = value;
}
// Get the register from the architecture state.
intptr_t Simulator::get_register(int reg) const {
DCHECK((reg >= 0) && (reg < kNumGPRs));
// Stupid code added to avoid bug in GCC.
// See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
if (reg >= kNumGPRs) return 0;
// End stupid code.
return registers_[reg];
}
double Simulator::get_double_from_register_pair(int reg) {
DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
double dm_val = 0.0;
#if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode
// Read the bits from the unsigned integer register_[] array
// into the double precision floating point value and return it.
char buffer[sizeof(fp_registers_[0])];
memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0]));
memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
#endif
return (dm_val);
}
// Raw access to the PC register.
void Simulator::set_pc(intptr_t value) {
pc_modified_ = true;
special_reg_pc_ = value;
}
bool Simulator::has_bad_pc() const {
return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
}
// Raw access to the PC register without the special adjustment when reading.
intptr_t Simulator::get_pc() const { return special_reg_pc_; }
// Accessor to the internal Link Register
intptr_t Simulator::get_lr() const { return special_reg_lr_; }
// Runtime FP routines take:
// - two double arguments
// - one double argument and zero or one integer arguments.
// All are consructed here from d1, d2 and r3.
void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
*x = get_double_from_d_register(1);
*y = get_double_from_d_register(2);
*z = get_register(3);
}
// The return value is in d1.
void Simulator::SetFpResult(const double& result) {
set_d_register_from_double(1, result);
}
void Simulator::TrashCallerSaveRegisters() {
// We don't trash the registers with the return value.
#if 0 // A good idea to trash volatile registers, needs to be done
registers_[2] = 0x50BAD4U;
registers_[3] = 0x50BAD4U;
registers_[12] = 0x50BAD4U;
#endif
}
#define GENERATE_RW_FUNC(size, type) \
type Simulator::Read##size(uintptr_t addr) { \
type value; \
Read(addr, &value); \
return value; \
} \
type Simulator::ReadEx##size(uintptr_t addr) { \
type value; \
ReadEx(addr, &value); \
return value; \
} \
void Simulator::Write##size(uintptr_t addr, type value) { \
Write(addr, value); \
} \
int32_t Simulator::WriteEx##size(uintptr_t addr, type value) { \
return WriteEx(addr, value); \
}
RW_VAR_LIST(GENERATE_RW_FUNC)
#undef GENERATE_RW_FUNC
// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
// The simulator uses a separate JS stack. If we have exhausted the C stack,
// we also drop down the JS limit to reflect the exhaustion on the JS stack.
if (base::Stack::GetCurrentStackPosition() < c_limit) {
return reinterpret_cast<uintptr_t>(get_sp());
}
// Otherwise the limit is the JS stack. Leave a safety margin to prevent
// overrunning the stack when pushing values.
return reinterpret_cast<uintptr_t>(stack_) + kStackProtectionSize;
}
base::Vector<uint8_t> Simulator::GetCurrentStackView() const {
// We do not add an additional safety margin as above in
// Simulator::StackLimit, as this is currently only used in wasm::StackMemory,
// which adds its own margin.
return base::VectorOf(stack_, UsableStackSize());
}
// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instruction* instr, const char* format) {
PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
reinterpret_cast<intptr_t>(instr), format);
UNIMPLEMENTED();
}
// Calculate C flag value for additions.
bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
uint32_t uleft = static_cast<uint32_t>(left);
uint32_t uright = static_cast<uint32_t>(right);
uint32_t urest = 0xFFFFFFFFU - uleft;
return (uright > urest) ||
(carry && (((uright + 1) > urest) || (uright > (urest - 1))));
}
// Calculate C flag value for subtractions.
bool Simulator::BorrowFrom(int32_t left, int32_t right) {
uint32_t uleft = static_cast<uint32_t>(left);
uint32_t uright = static_cast<uint32_t>(right);
return (uright > uleft);
}
// Calculate V flag value for additions and subtractions.
bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
bool addition) {
bool overflow;
if (addition) {
// operands have the same sign
overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
// and operands and result have different sign
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
} else {
// operands have different signs
overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
// and first operand and result have different signs
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
}
return overflow;
}
static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
*x = static_cast<intptr_t>(pair->x);
*y = static_cast<intptr_t>(pair->y);
}
// Calls into the V8 runtime.
using SimulatorRuntimeCall = intptr_t (*)(
intptr_t arg0, intptr_t arg1, intptr_t arg2, intptr_t arg3, intptr_t arg4,
intptr_t arg5, intptr_t arg6, intptr_t arg7, intptr_t arg8, intptr_t arg9,
intptr_t arg10, intptr_t arg11, intptr_t arg12, intptr_t arg13,
intptr_t arg14, intptr_t arg15, intptr_t arg16, intptr_t arg17,
intptr_t arg18, intptr_t arg19);
using SimulatorRuntimePairCall = ObjectPair (*)(
intptr_t arg0, intptr_t arg1, intptr_t arg2, intptr_t arg3, intptr_t arg4,
intptr_t arg5, intptr_t arg6, intptr_t arg7, intptr_t arg8, intptr_t arg9,
intptr_t arg10, intptr_t arg11, intptr_t arg12, intptr_t arg13,
intptr_t arg14, intptr_t arg15, intptr_t arg16, intptr_t arg17,
intptr_t arg18, intptr_t arg19);
// These prototypes handle the four types of FP calls.
using SimulatorRuntimeCompareCall = int (*)(double darg0, double darg1);
using SimulatorRuntimeFPFPCall = double (*)(double darg0, double darg1);
using SimulatorRuntimeFPCall = double (*)(double darg0);
using SimulatorRuntimeFPIntCall = double (*)(double darg0, intptr_t arg0);
// Define four args for future flexibility; at the time of this writing only
// one is ever used.
using SimulatorRuntimeFPTaggedCall = double (*)(int32_t arg0, int32_t arg1,
int32_t arg2, int32_t arg3);
// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
using SimulatorRuntimeDirectApiCall = void (*)(intptr_t arg0);
// This signature supports direct call to accessor getter callback.
using SimulatorRuntimeDirectGetterCall = void (*)(intptr_t arg0, intptr_t arg1);
// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime.
void Simulator::SoftwareInterrupt(Instruction* instr) {
int svc = instr->SvcValue();
switch (svc) {
case kCallRtRedirected: {
// Check if stack is aligned. Error if not aligned is reported below to
// include information on the function called.
bool stack_aligned =
(get_register(sp) & (v8_flags.sim_stack_alignment - 1)) == 0;
Redirection* redirection = Redirection::FromInstruction(instr);
const int kArgCount = 20;
const int kRegisterArgCount = 8;
int arg0_regnum = 3;
intptr_t result_buffer = 0;
bool uses_result_buffer =
(redirection->type() == ExternalReference::BUILTIN_CALL_PAIR &&
!ABI_RETURNS_OBJECT_PAIRS_IN_REGS);
if (uses_result_buffer) {
result_buffer = get_register(r3);
arg0_regnum++;
}
intptr_t arg[kArgCount];
// First eight arguments in registers r3-r10.
for (int i = 0; i < kRegisterArgCount; i++) {
arg[i] = get_register(arg0_regnum + i);
}
intptr_t* stack_pointer = reinterpret_cast<intptr_t*>(get_register(sp));
// Remaining argument on stack
for (int i = kRegisterArgCount, j = 0; i < kArgCount; i++, j++) {
arg[i] = stack_pointer[kStackFrameExtraParamSlot + j];
}
static_assert(kArgCount == kRegisterArgCount + 12);
static_assert(kMaxCParameters == kArgCount);
bool fp_call =
(redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
// This is dodgy but it works because the C entry stubs are never moved.
// See comment in codegen-arm.cc and bug 1242173.
intptr_t saved_lr = special_reg_lr_;
intptr_t external =
reinterpret_cast<intptr_t>(redirection->external_function());
if (fp_call) {
double dval0, dval1; // one or two double parameters
intptr_t ival; // zero or one integer parameters
int iresult = 0; // integer return value
double dresult = 0; // double return value
GetFpArgs(&dval0, &dval1, &ival);
if (v8_flags.trace_sim || !stack_aligned) {
SimulatorRuntimeCall generic_target =
reinterpret_cast<SimulatorRuntimeCall>(external);
switch (redirection->type()) {
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Call to host function at %p with args %f, %f",
reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
dval0, dval1);
break;
case ExternalReference::BUILTIN_FP_CALL:
PrintF("Call to host function at %p with arg %f",
reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
dval0);
break;
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
dval0, ival);
break;
default:
UNREACHABLE();
}
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL: {
SimulatorRuntimeCompareCall target =
reinterpret_cast<SimulatorRuntimeCompareCall>(external);
iresult = target(dval0, dval1);
set_register(r3, iresult);
break;
}
case ExternalReference::BUILTIN_FP_FP_CALL: {
SimulatorRuntimeFPFPCall target =
reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
dresult = target(dval0, dval1);
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_CALL: {
SimulatorRuntimeFPCall target =
reinterpret_cast<SimulatorRuntimeFPCall>(external);
dresult = target(dval0);
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_INT_CALL: {
SimulatorRuntimeFPIntCall target =
reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
dresult = target(dval0, ival);
SetFpResult(dresult);
break;
}
default:
UNREACHABLE();
}
if (v8_flags.trace_sim) {
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Returned %08x\n", iresult);
break;
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_FP_CALL:
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Returned %f\n", dresult);
break;
default:
UNREACHABLE();
}
}
} else if (redirection->type() ==
ExternalReference::BUILTIN_FP_POINTER_CALL) {
if (v8_flags.trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08" V8PRIxPTR,
reinterpret_cast<void*>(external), arg[0]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
SimulatorRuntimeFPTaggedCall target =
reinterpret_cast<SimulatorRuntimeFPTaggedCall>(external);
double dresult = target(arg[0], arg[1], arg[2], arg[3]);
#ifdef DEBUG
TrashCallerSaveRegisters();
#endif
SetFpResult(dresult);
if (v8_flags.trace_sim) {
PrintF("Returned %f\n", dresult);
}
} else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
// See callers of MacroAssembler::CallApiFunctionAndReturn for
// explanation of register usage.
// void f(v8::FunctionCallbackInfo&)
if (v8_flags.trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08" V8PRIxPTR,
reinterpret_cast<void*>(external), arg[0]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
SimulatorRuntimeDirectApiCall target =
reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
target(arg[0]);
} else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
// See callers of MacroAssembler::CallApiFunctionAndReturn for
// explanation of register usage.
// void f(v8::Local<String> property, v8::PropertyCallbackInfo& info)
if (v8_flags.trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08" V8PRIxPTR
" %08" V8PRIxPTR,
reinterpret_cast<void*>(external), arg[0], arg[1]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
SimulatorRuntimeDirectGetterCall target =
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
if (!ABI_PASSES_HANDLES_IN_REGS) {
arg[0] = base::bit_cast<intptr_t>(arg[0]);
}
target(arg[0], arg[1]);
} else {
// builtin call.
if (v8_flags.trace_sim || !stack_aligned) {
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
PrintF(
"Call to host function at %p,\n"
"\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
", %08" V8PRIxPTR ", %08" V8PRIxPTR,
reinterpret_cast<void*>(FUNCTION_ADDR(target)), arg[0], arg[1],
arg[2], arg[3], arg[4], arg[5], arg[6], arg[7], arg[8], arg[9],
arg[10], arg[11], arg[12], arg[13], arg[14], arg[15], arg[16],
arg[17], arg[18], arg[19]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) {
SimulatorRuntimePairCall target =
reinterpret_cast<SimulatorRuntimePairCall>(external);
ObjectPair result =
target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5], arg[6],
arg[7], arg[8], arg[9], arg[10], arg[11], arg[12], arg[13],
arg[14], arg[15], arg[16], arg[17], arg[18], arg[19]);
intptr_t x;
intptr_t y;
decodeObjectPair(&result, &x, &y);
if (v8_flags.trace_sim) {
PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
}
if (ABI_RETURNS_OBJECT_PAIRS_IN_REGS) {
set_register(r3, x);
set_register(r4, y);
} else {
memcpy(reinterpret_cast<void*>(result_buffer), &result,
sizeof(ObjectPair));
set_register(r3, result_buffer);
}
} else {
// FAST_C_CALL is temporarily handled here as well, because we lack
// proper support for direct C calls with FP params in the simulator.
// The generic BUILTIN_CALL path assumes all parameters are passed in
// the GP registers, thus supporting calling the slow callback without
// crashing. The reason for that is that in the mjsunit tests we check
// the `fast_c_api.supports_fp_params` (which is false on
// non-simulator builds for arm/arm64), thus we expect that the slow
// path will be called. And since the slow path passes the arguments
// as a `const FunctionCallbackInfo<Value>&` (which is a GP argument),
// the call is made correctly.
DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL ||
redirection->type() == ExternalReference::FAST_C_CALL);
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
intptr_t result =
target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5], arg[6],
arg[7], arg[8], arg[9], arg[10], arg[11], arg[12], arg[13],
arg[14], arg[15], arg[16], arg[17], arg[18], arg[19]);
if (v8_flags.trace_sim) {
PrintF("Returned %08" V8PRIxPTR "\n", result);
}
set_register(r3, result);
}
}
set_pc(saved_lr);
break;
}
case kBreakpoint:
PPCDebugger(this).Debug();
break;
// stop uses all codes greater than 1 << 23.
default:
if (svc >= (1 << 23)) {
uint32_t code = svc & kStopCodeMask;
if (isWatchedStop(code)) {
IncreaseStopCounter(code);
}
// Stop if it is enabled, otherwise go on jumping over the stop
// and the message address.
if (isEnabledStop(code)) {
if (code != kMaxStopCode) {
PrintF("Simulator hit stop %u. ", code);
} else {
PrintF("Simulator hit stop. ");
}
DebugAtNextPC();
} else {
set_pc(get_pc() + kInstrSize + kSystemPointerSize);
}
} else {
// This is not a valid svc code.
UNREACHABLE();
}
}
}
// Stop helper functions.
bool Simulator::isStopInstruction(Instruction* instr) {
return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
}
bool Simulator::isWatchedStop(uint32_t code) {
DCHECK_LE(code, kMaxStopCode);
return code < kNumOfWatchedStops;
}
bool Simulator::isEnabledStop(uint32_t code) {
DCHECK_LE(code, kMaxStopCode);
// Unwatched stops are always enabled.
return !isWatchedStop(code) ||
!(watched_stops_[code].count & kStopDisabledBit);
}
void Simulator::EnableStop(uint32_t code) {
DCHECK(isWatchedStop(code));
if (!isEnabledStop(code)) {
watched_stops_[code].count &= ~kStopDisabledBit;
}
}
void Simulator::DisableStop(uint32_t code) {
DCHECK(isWatchedStop(code));
if (isEnabledStop(code)) {
watched_stops_[code].count |= kStopDisabledBit;
}
}
void Simulator::IncreaseStopCounter(uint32_t code) {
DCHECK_LE(code, kMaxStopCode);
DCHECK(isWatchedStop(code));
if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) {
PrintF(
"Stop counter for code %i has overflowed.\n"
"Enabling this code and reseting the counter to 0.\n",
code);
watched_stops_[code].count = 0;
EnableStop(code);
} else {
watched_stops_[code].count++;
}
}
// Print a stop status.
void Simulator::PrintStopInfo(uint32_t code) {
DCHECK_LE(code, kMaxStopCode);
if (!isWatchedStop(code)) {
PrintF("Stop not watched.");
} else {
const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
// Don't print the state of unused breakpoints.
if (count != 0) {
if (watched_stops_[code].desc) {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
state, count, watched_stops_[code].desc);
} else {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
count);
}
}
}
}
void Simulator::SetCR0(intptr_t result, bool setSO) {
int bf = 0;
if (result < 0) {
bf |= 0x80000000;
}
if (result > 0) {
bf |= 0x40000000;
}
if (result == 0) {
bf |= 0x20000000;
}
if (setSO) {
bf |= 0x10000000;
}
condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
}
void Simulator::SetCR6(bool true_for_all) {
int32_t clear_cr6_mask = 0xFFFFFF0F;
if (true_for_all) {
condition_reg_ = (condition_reg_ & clear_cr6_mask) | 0x80;
} else {
condition_reg_ = (condition_reg_ & clear_cr6_mask) | 0x20;
}
}
void Simulator::ExecuteBranchConditional(Instruction* instr, BCType type) {
int bo = instr->Bits(25, 21) << 21;
int condition_bit = instr->Bits(20, 16);
int condition_mask = 0x80000000 >> condition_bit;
switch (bo) {
case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false
case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false
UNIMPLEMENTED();
case BF: { // Branch if condition false
if (condition_reg_ & condition_mask) return;
break;
}
case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true
case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true
UNIMPLEMENTED();
case BT: { // Branch if condition true
if (!(condition_reg_ & condition_mask)) return;
break;
}
case DCBNZ: // Decrement CTR; branch if CTR != 0
case DCBEZ: // Decrement CTR; branch if CTR == 0
special_reg_ctr_ -= 1;
if ((special_reg_ctr_ == 0) != (bo == DCBEZ)) return;
break;
case BA: { // Branch always
break;
}
default:
UNIMPLEMENTED(); // Invalid encoding
}
intptr_t old_pc = get_pc();
switch (type) {
case BC_OFFSET: {
int offset = (instr->Bits(15, 2) << 18) >> 16;
set_pc(old_pc + offset);
break;
}
case BC_LINK_REG:
set_pc(special_reg_lr_);
break;
case BC_CTR_REG:
set_pc(special_reg_ctr_);
break;
}
if (instr->Bit(0) == 1) { // LK flag set
special_reg_lr_ = old_pc + 4;
}
}
// Vector instruction helpers.
#define GET_ADDRESS(a, b, a_val, b_val) \
intptr_t a_val = a == 0 ? 0 : get_register(a); \
intptr_t b_val = get_register(b);
#define DECODE_VX_INSTRUCTION(d, a, b, source_or_target) \
int d = instr->R##source_or_target##Value(); \
int a = instr->RAValue(); \
int b = instr->RBValue();
#define FOR_EACH_LANE(i, type) \
for (uint32_t i = 0; i < kSimd128Size / sizeof(type); i++)
template <typename A, typename T, typename Operation>
void VectorCompareOp(Simulator* sim, Instruction* instr, bool is_fp,
Operation op) {
DECODE_VX_INSTRUCTION(t, a, b, T)
bool true_for_all = true;
FOR_EACH_LANE(i, A) {
A a_val = sim->get_simd_register_by_lane<A>(a, i);
A b_val = sim->get_simd_register_by_lane<A>(b, i);
T t_val = 0;
bool is_not_nan = is_fp ? !isnan(a_val) && !isnan(b_val) : true;
if (is_not_nan && op(a_val, b_val)) {
t_val = -1; // Set all bits to 1 indicating true.
} else {
true_for_all = false;
}
sim->set_simd_register_by_lane<T>(t, i, t_val);
}
if (instr->Bit(10)) { // RC bit set.
sim->SetCR6(true_for_all);
}
}
template <typename S, typename T>
void VectorConverFromFPSaturate(Simulator* sim, Instruction* instr, T min_val,
T max_val, bool even_lane_result = false) {
int t = instr->RTValue();
int b = instr->RBValue();
FOR_EACH_LANE(i, S) {
T t_val;
double b_val = static_cast<double>(sim->get_simd_register_by_lane<S>(b, i));
if (isnan(b_val)) {
t_val = min_val;
} else {
// Round Towards Zero.
b_val = std::trunc(b_val);
if (b_val < min_val) {
t_val = min_val;
} else if (b_val > max_val) {
t_val = max_val;
} else {
t_val = static_cast<T>(b_val);
}
}
sim->set_simd_register_by_lane<T>(t, even_lane_result ? 2 * i : i, t_val);
}
}
template <typename S, typename T>
void VectorPackSaturate(Simulator* sim, Instruction* instr, S min_val,
S max_val) {
DECODE_VX_INSTRUCTION(t, a, b, T)
int src = a;
int count = 0;
S value = 0;
// Setup a temp array to avoid overwriting dst mid loop.
T temps[kSimd128Size / sizeof(T)] = {0};
for (size_t i = 0; i < kSimd128Size / sizeof(T); i++, count++) {
if (count == kSimd128Size / sizeof(S)) {
src = b;
count = 0;
}
value = sim->get_simd_register_by_lane<S>(src, count);
if (value > max_val) {
value = max_val;
} else if (value < min_val) {
value = min_val;
}
temps[i] = static_cast<T>(value);
}
FOR_EACH_LANE(i, T) { sim->set_simd_register_by_lane<T>(t, i, temps[i]); }
}
template <typename T>
T VSXFPMin(T x, T y) {
// Handle NaN.
// TODO(miladfarca): include the payload of src1.
if (std::isnan(x) && std::isnan(y)) return NAN;
// Handle +0 and -0.
if (std::signbit(x) < std::signbit(y)) return y;
if (std::signbit(y) < std::signbit(x)) return x;
return std::fmin(x, y);
}
template <typename T>
T VSXFPMax(T x, T y) {
// Handle NaN.
// TODO(miladfarca): include the payload of src1.
if (std::isnan(x) && std::isnan(y)) return NAN;
// Handle +0 and -0.
if (std::signbit(x) < std::signbit(y)) return x;
if (std::signbit(y) < std::signbit(x)) return y;
return std::fmax(x, y);
}
float VMXFPMin(float x, float y) {
// Handle NaN.
if (std::isnan(x) || std::isnan(y)) return NAN;
// Handle +0 and -0.
if (std::signbit(x) < std::signbit(y)) return y;
if (std::signbit(y) < std::signbit(x)) return x;
return x < y ? x : y;
}
float VMXFPMax(float x, float y) {
// Handle NaN.
if (std::isnan(x) || std::isnan(y)) return NAN;
// Handle +0 and -0.
if (std::signbit(x) < std::signbit(y)) return x;
if (std::signbit(y) < std::signbit(x)) return y;
return x > y ? x : y;
}
void Simulator::ExecuteGeneric(Instruction* instr) {
uint32_t opcode = instr->OpcodeBase();
switch (opcode) {
// Prefixed instructions.
case PLOAD_STORE_8LS:
case PLOAD_STORE_MLS: {
// TODO(miladfarca): Simulate PC-relative capability indicated by the R
// bit.
DCHECK_NE(instr->Bit(20), 1);
// Read prefix value.
uint64_t prefix_value = instr->Bits(17, 0);
// Read suffix (next instruction).
Instruction* next_instr =
base::bit_cast<Instruction*>(get_pc() + kInstrSize);
uint16_t suffix_value = next_instr->Bits(15, 0);
int64_t im_val = SIGN_EXT_IMM34((prefix_value << 16) | suffix_value);
switch (next_instr->OpcodeBase()) {
// Prefixed ADDI.
case ADDI: {
int rt = next_instr->RTValue();
int ra = next_instr->RAValue();
intptr_t alu_out;
if (ra == 0) {
alu_out = im_val;
} else {
intptr_t ra_val = get_register(ra);
alu_out = ra_val + im_val;
}
set_register(rt, alu_out);
break;
}
// Prefixed LBZ.
case LBZ: {
int ra = next_instr->RAValue();
int rt = next_instr->RTValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
set_register(rt, ReadB(ra_val + im_val) & 0xFF);
break;
}
// Prefixed LHZ.
case LHZ: {
int ra = next_instr->RAValue();
int rt = next_instr->RTValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
uintptr_t result = ReadHU(ra_val + im_val) & 0xFFFF;
set_register(rt, result);
break;
}
// Prefixed LHA.
case LHA: {
int ra = next_instr->RAValue();
int rt = next_instr->RTValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t result = ReadH(ra_val + im_val);
set_register(rt, result);
break;
}
// Prefixed LWZ.
case LWZ: {
int ra = next_instr->RAValue();
int rt = next_instr->RTValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
set_register(rt, ReadWU(ra_val + im_val));
break;
}
// Prefixed LWA.
case PPLWA: {
int ra = next_instr->RAValue();
int rt = next_instr->RTValue();
int64_t ra_val = ra == 0 ? 0 : get_register(ra);
set_register(rt, ReadW(ra_val + im_val));
break;
}
// Prefixed LD.
case PPLD: {
int ra = next_instr->RAValue();
int rt = next_instr->RTValue();
int64_t ra_val = ra == 0 ? 0 : get_register(ra);
set_register(rt, ReadDW(ra_val + im_val));
break;
}
// Prefixed LFS.
case LFS: {
int frt = next_instr->RTValue();
int ra = next_instr->RAValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int32_t val = ReadW(ra_val + im_val);
float* fptr = reinterpret_cast<float*>(&val);
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
// Conversion using double changes sNan to qNan on ia32/x64
if ((val & 0x7F800000) == 0x7F800000) {
int64_t dval = static_cast<int64_t>(val);
dval = ((dval & 0xC0000000) << 32) | ((dval & 0x40000000) << 31) |
((dval & 0x40000000) << 30) | ((dval & 0x7FFFFFFF) << 29) |
0x0;
set_d_register(frt, dval);
} else {
set_d_register_from_double(frt, static_cast<double>(*fptr));
}
#else
set_d_register_from_double(frt, static_cast<double>(*fptr));
#endif
break;
}
// Prefixed LFD.
case LFD: {
int frt = next_instr->RTValue();
int ra = next_instr->RAValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int64_t dptr = ReadDW(ra_val + im_val);
set_d_register(frt, dptr);
break;
}
// Prefixed STB.
case STB: {
int ra = next_instr->RAValue();
int rs = next_instr->RSValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
WriteB(ra_val + im_val, get_register(rs));
break;
}
// Prefixed STH.
case STH: {
int ra = next_instr->RAValue();
int rs = next_instr->RSValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
WriteH(ra_val + im_val, get_register(rs));
break;
}
// Prefixed STW.
case STW: {
int ra = next_instr->RAValue();
int rs = next_instr->RSValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
WriteW(ra_val + im_val, get_register(rs));
break;
}
// Prefixed STD.
case PPSTD: {
int ra = next_instr->RAValue();
int rs = next_instr->RSValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
WriteDW(ra_val + im_val, get_register(rs));
break;
}
// Prefixed STFS.
case STFS: {
int frs = next_instr->RSValue();
int ra = next_instr->RAValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
float frs_val = static_cast<float>(get_double_from_d_register(frs));
int32_t* p;
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
// Conversion using double changes sNan to qNan on ia32/x64
int32_t sval = 0;
int64_t dval = get_d_register(frs);
if ((dval & 0x7FF0000000000000) == 0x7FF0000000000000) {
sval = ((dval & 0xC000000000000000) >> 32) |
((dval & 0x07FFFFFFE0000000) >> 29);
p = &sval;
} else {
p = reinterpret_cast<int32_t*>(&frs_val);
}
#else
p = reinterpret_cast<int32_t*>(&frs_val);
#endif
WriteW(ra_val + im_val, *p);
break;
}
// Prefixed STFD.
case STFD: {
int frs = next_instr->RSValue();
int ra = next_instr->RAValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int64_t frs_val = get_d_register(frs);
WriteDW(ra_val + im_val, frs_val);
break;
}
default:
UNREACHABLE();
}
// We have now executed instructions at this as well as next pc.
set_pc(get_pc() + (2 * kInstrSize));
break;
}
case SUBFIC: {
int rt = instr->RTValue();
int ra = instr->RAValue();
intptr_t ra_val = get_register(ra);
int32_t im_val = instr->Bits(15, 0);
im_val = SIGN_EXT_IMM16(im_val);
intptr_t alu_out = im_val - ra_val;
set_register(rt, alu_out);
// todo - handle RC bit
break;
}
case CMPLI: {
int ra = instr->RAValue();
uint32_t im_val = instr->Bits(15, 0);
int cr = instr->Bits(25, 23);
uint32_t bf = 0;
#if V8_TARGET_ARCH_PPC64
int L = instr->Bit(21);
if (L) {
#endif
uintptr_t ra_val = get_register(ra);
if (ra_val < im_val) {
bf |= 0x80000000;
}
if (ra_val > im_val) {
bf |= 0x40000000;
}
if (ra_val == im_val) {
bf |= 0x20000000;
}
#if V8_TARGET_ARCH_PPC64
} else {
uint32_t ra_val = get_register(ra);
if (ra_val < im_val) {
bf |= 0x80000000;
}
if (ra_val > im_val) {
bf |= 0x40000000;
}
if (ra_val == im_val) {
bf |= 0x20000000;
}
}
#endif
uint32_t condition_mask = 0xF0000000U >> (cr * 4);
uint32_t condition = bf >> (cr * 4);
condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
break;
}
case CMPI: {
int ra = instr->RAValue();
int32_t im_val = instr->Bits(15, 0);
im_val = SIGN_EXT_IMM16(im_val);
int cr = instr->Bits(25, 23);
uint32_t bf = 0;
#if V8_TARGET_ARCH_PPC64
int L = instr->Bit(21);
if (L) {
#endif
intptr_t ra_val = get_register(ra);
if (ra_val < im_val) {
bf |= 0x80000000;
}
if (ra_val > im_val) {
bf |= 0x40000000;
}
if (ra_val == im_val) {
bf |= 0x20000000;
}
#if V8_TARGET_ARCH_PPC64
} else {
int32_t ra_val = get_register(ra);
if (ra_val < im_val) {
bf |= 0x80000000;
}
if (ra_val > im_val) {
bf |= 0x40000000;
}
if (ra_val == im_val) {
bf |= 0x20000000;
}
}
#endif
uint32_t condition_mask = 0xF0000000U >> (cr * 4);
uint32_t condition = bf >> (cr * 4);
condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
break;
}
case ADDIC: {
int rt = instr->RTValue();
int ra = instr->RAValue();
uintptr_t ra_val = get_register(ra);
uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
uintptr_t alu_out = ra_val + im_val;
// Check overflow
if (~ra_val < im_val) {
special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
} else {
special_reg_xer_ &= ~0xF0000000;
}
set_register(rt, alu_out);
break;
}
case ADDI: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
intptr_t alu_out;
if (ra == 0) {
alu_out = im_val;
} else {
intptr_t ra_val = get_register(ra);
alu_out = ra_val + im_val;
}
set_register(rt, alu_out);
// todo - handle RC bit
break;
}
case ADDIS: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int32_t im_val = (instr->Bits(15, 0) << 16);
intptr_t alu_out;
if (ra == 0) { // treat r0 as zero
alu_out = im_val;
} else {
intptr_t ra_val = get_register(ra);
alu_out = ra_val + im_val;
}
set_register(rt, alu_out);
break;
}
case BCX: {
ExecuteBranchConditional(instr, BC_OFFSET);
break;
}
case BX: {
int offset = (instr->Bits(25, 2) << 8) >> 6;
if (instr->Bit(0) == 1) { // LK flag set
special_reg_lr_ = get_pc() + 4;
}
set_pc(get_pc() + offset);
// todo - AA flag
break;
}
case MCRF:
UNIMPLEMENTED(); // Not used by V8.
case BCLRX:
ExecuteBranchConditional(instr, BC_LINK_REG);
break;
case BCCTRX:
ExecuteBranchConditional(instr, BC_CTR_REG);
break;
case CRNOR:
case RFI:
case CRANDC:
UNIMPLEMENTED();
case ISYNC: {
// todo - simulate isync
break;
}
case CRXOR: {
int bt = instr->Bits(25, 21);
int ba = instr->Bits(20, 16);
int bb = instr->Bits(15, 11);
int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
int bt_val = ba_val ^ bb_val;
bt_val = bt_val << (31 - bt); // shift bit to correct destination
condition_reg_ &= ~(0x80000000 >> bt);
condition_reg_ |= bt_val;
break;
}
case CREQV: {
int bt = instr->Bits(25, 21);
int ba = instr->Bits(20, 16);
int bb = instr->Bits(15, 11);
int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
int bt_val = 1 - (ba_val ^ bb_val);
bt_val = bt_val << (31 - bt); // shift bit to correct destination
condition_reg_ &= ~(0x80000000 >> bt);
condition_reg_ |= bt_val;
break;
}
case CRNAND:
case CRAND:
case CRORC:
case CROR: {
UNIMPLEMENTED(); // Not used by V8.
}
case RLWIMIX: {
int ra = instr->RAValue();
int rs = instr->RSValue();
uint32_t rs_val = get_register(rs);
int32_t ra_val = get_register(ra);
int sh = instr->Bits(15, 11);
int mb = instr->Bits(10, 6);
int me = instr->Bits(5, 1);
uint32_t result = base::bits::RotateLeft32(rs_val, sh);
int mask = 0;
if (mb < me + 1) {
int bit = 0x80000000 >> mb;
for (; mb <= me; mb++) {
mask |= bit;
bit >>= 1;
}
} else if (mb == me + 1) {
mask = 0xFFFFFFFF;
} else { // mb > me+1
int bit = 0x80000000 >> (me + 1); // needs to be tested
mask = 0xFFFFFFFF;
for (; me < mb; me++) {
mask ^= bit;
bit >>= 1;
}
}
result &= mask;
ra_val &= ~mask;
result |= ra_val;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
case RLWINMX:
case RLWNMX: {
int ra = instr->RAValue();
int rs = instr->RSValue();
uint32_t rs_val = get_register(rs);
int sh = 0;
if (opcode == RLWINMX) {
sh = instr->Bits(15, 11);
} else {
int rb = instr->RBValue();
uint32_t rb_val = get_register(rb);
sh = (rb_val & 0x1F);
}
int mb = instr->Bits(10, 6);
int me = instr->Bits(5, 1);
uint32_t result = base::bits::RotateLeft32(rs_val, sh);
int mask = 0;
if (mb < me + 1) {
int bit = 0x80000000 >> mb;
for (; mb <= me; mb++) {
mask |= bit;
bit >>= 1;
}
} else if (mb == me + 1) {
mask = 0xFFFFFFFF;
} else { // mb > me+1
int bit = 0x80000000 >> (me + 1); // needs to be tested
mask = 0xFFFFFFFF;
for (; me < mb; me++) {
mask ^= bit;
bit >>= 1;
}
}
result &= mask;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
case ORI: {
int rs = instr->RSValue();
int ra = instr->RAValue();
intptr_t rs_val = get_register(rs);
uint32_t im_val = instr->Bits(15, 0);
intptr_t alu_out = rs_val | im_val;
set_register(ra, alu_out);
break;
}
case ORIS: {
int rs = instr->RSValue();
int ra = instr->RAValue();
intptr_t rs_val = get_register(rs);
uint32_t im_val = instr->Bits(15, 0);
intptr_t alu_out = rs_val | (im_val << 16);
set_register(ra, alu_out);
break;
}
case XORI: {
int rs = instr->RSValue();
int ra = instr->RAValue();
intptr_t rs_val = get_register(rs);
uint32_t im_val = instr->Bits(15, 0);
intptr_t alu_out = rs_val ^ im_val;
set_register(ra, alu_out);
// todo - set condition based SO bit
break;
}
case XORIS: {
int rs = instr->RSValue();
int ra = instr->RAValue();
intptr_t rs_val = get_register(rs);
uint32_t im_val = instr->Bits(15, 0);
intptr_t alu_out = rs_val ^ (im_val << 16);
set_register(ra, alu_out);
break;
}
case ANDIx: {
int rs = instr->RSValue();
int ra = instr->RAValue();
intptr_t rs_val = get_register(rs);
uint32_t im_val = instr->Bits(15, 0);
intptr_t alu_out = rs_val & im_val;
set_register(ra, alu_out);
SetCR0(alu_out);
break;
}
case ANDISx: {
int rs = instr->RSValue();
int ra = instr->RAValue();
intptr_t rs_val = get_register(rs);
uint32_t im_val = instr->Bits(15, 0);
intptr_t alu_out = rs_val & (im_val << 16);
set_register(ra, alu_out);
SetCR0(alu_out);
break;
}
case SRWX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uint32_t rs_val = get_register(rs);
uintptr_t rb_val = get_register(rb) & 0x3F;
intptr_t result = (rb_val > 31) ? 0 : rs_val >> rb_val;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
#if V8_TARGET_ARCH_PPC64
case SRDX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uintptr_t rs_val = get_register(rs);
uintptr_t rb_val = get_register(rb) & 0x7F;
intptr_t result = (rb_val > 63) ? 0 : rs_val >> rb_val;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
#endif
case MODUW: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uint32_t ra_val = get_register(ra);
uint32_t rb_val = get_register(rb);
uint32_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val;
set_register(rt, alu_out);
break;
}
#if V8_TARGET_ARCH_PPC64
case MODUD: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uint64_t ra_val = get_register(ra);
uint64_t rb_val = get_register(rb);
uint64_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val;
set_register(rt, alu_out);
break;
}
#endif
case MODSW: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int32_t ra_val = get_register(ra);
int32_t rb_val = get_register(rb);
bool overflow = (ra_val == kMinInt && rb_val == -1);
// result is undefined if divisor is zero or if operation
// is 0x80000000 / -1.
int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val % rb_val;
set_register(rt, alu_out);
break;
}
#if V8_TARGET_ARCH_PPC64
case MODSD: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int64_t ra_val = get_register(ra);
int64_t rb_val = get_register(rb);
int64_t one = 1; // work-around gcc
int64_t kMinLongLong = (one << 63);
// result is undefined if divisor is zero or if operation
// is 0x80000000_00000000 / -1.
int64_t alu_out =
(rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
? -1
: ra_val % rb_val;
set_register(rt, alu_out);
break;
}
#endif
case SRAW: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int32_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb) & 0x3F;
intptr_t result = (rb_val > 31) ? rs_val >> 31 : rs_val >> rb_val;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
#if V8_TARGET_ARCH_PPC64
case SRAD: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb) & 0x7F;
intptr_t result = (rb_val > 63) ? rs_val >> 63 : rs_val >> rb_val;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
#endif
case SRAWIX: {
int ra = instr->RAValue();
int rs = instr->RSValue();
int sh = instr->Bits(15, 11);
int32_t rs_val = get_register(rs);
intptr_t result = rs_val >> sh;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
#if V8_TARGET_ARCH_PPC64
case EXTSW: {
const int shift = kBitsPerSystemPointer - 32;
int ra = instr->RAValue();
int rs = instr->RSValue();
intptr_t rs_val = get_register(rs);
intptr_t ra_val = (rs_val << shift) >> shift;
set_register(ra, ra_val);
if (instr->Bit(0)) { // RC bit set
SetCR0(ra_val);
}
break;
}
#endif
case EXTSH: {
const int shift = kBitsPerSystemPointer - 16;
int ra = instr->RAValue();
int rs = instr->RSValue();
intptr_t rs_val = get_register(rs);
intptr_t ra_val = (rs_val << shift) >> shift;
set_register(ra, ra_val);
if (instr->Bit(0)) { // RC bit set
SetCR0(ra_val);
}
break;
}
case EXTSB: {
const int shift = kBitsPerSystemPointer - 8;
int ra = instr->RAValue();
int rs = instr->RSValue();
intptr_t rs_val = get_register(rs);
intptr_t ra_val = (rs_val << shift) >> shift;
set_register(ra, ra_val);
if (instr->Bit(0)) { // RC bit set
SetCR0(ra_val);
}
break;
}
case LFSUX:
case LFSX: {
int frt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
int32_t val = ReadW(ra_val + rb_val);
float* fptr = reinterpret_cast<float*>(&val);
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
// Conversion using double changes sNan to qNan on ia32/x64
if ((val & 0x7F800000) == 0x7F800000) {
int64_t dval = static_cast<int64_t>(val);
dval = ((dval & 0xC0000000) << 32) | ((dval & 0x40000000) << 31) |
((dval & 0x40000000) << 30) | ((dval & 0x7FFFFFFF) << 29) | 0x0;
set_d_register(frt, dval);
} else {
set_d_register_from_double(frt, static_cast<double>(*fptr));
}
#else
set_d_register_from_double(frt, static_cast<double>(*fptr));
#endif
if (opcode == LFSUX) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case LFDUX:
case LFDX: {
int frt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
int64_t dptr = ReadDW(ra_val + rb_val);
set_d_register(frt, dptr);
if (opcode == LFDUX) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case STFSUX:
V8_FALLTHROUGH;
case STFSX: {
int frs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
float frs_val = static_cast<float>(get_double_from_d_register(frs));
int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
// Conversion using double changes sNan to qNan on ia32/x64
int32_t sval = 0;
int64_t dval = get_d_register(frs);
if ((dval & 0x7FF0000000000000) == 0x7FF0000000000000) {
sval = ((dval & 0xC000000000000000) >> 32) |
((dval & 0x07FFFFFFE0000000) >> 29);
p = &sval;
} else {
p = reinterpret_cast<int32_t*>(&frs_val);
}
#else
p = reinterpret_cast<int32_t*>(&frs_val);
#endif
WriteW(ra_val + rb_val, *p);
if (opcode == STFSUX) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case STFDUX:
V8_FALLTHROUGH;
case STFDX: {
int frs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
int64_t frs_val = get_d_register(frs);
WriteDW(ra_val + rb_val, frs_val);
if (opcode == STFDUX) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case POPCNTW: {
int rs = instr->RSValue();
int ra = instr->RAValue();
uintptr_t rs_val = get_register(rs);
uintptr_t count = 0;
int n = 0;
uintptr_t bit = 0x80000000;
for (; n < 32; n++) {
if (bit & rs_val) count++;
bit >>= 1;
}
set_register(ra, count);
break;
}
#if V8_TARGET_ARCH_PPC64
case POPCNTD: {
int rs = instr->RSValue();
int ra = instr->RAValue();
uintptr_t rs_val = get_register(rs);
uintptr_t count = 0;
int n = 0;
uintptr_t bit = 0x8000000000000000UL;
for (; n < 64; n++) {
if (bit & rs_val) count++;
bit >>= 1;
}
set_register(ra, count);
break;
}
#endif
case SYNC: {
// todo - simulate sync
__sync_synchronize();
break;
}
case ICBI: {
// todo - simulate icbi
break;
}
case LWZU:
case LWZ: {
int ra = instr->RAValue();
int rt = instr->RTValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
set_register(rt, ReadWU(ra_val + offset));
if (opcode == LWZU) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + offset);
}
break;
}
case LBZU:
case LBZ: {
int ra = instr->RAValue();
int rt = instr->RTValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
set_register(rt, ReadB(ra_val + offset) & 0xFF);
if (opcode == LBZU) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + offset);
}
break;
}
case STWU:
case STW: {
int ra = instr->RAValue();
int rs = instr->RSValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int32_t rs_val = get_register(rs);
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
WriteW(ra_val + offset, rs_val);
if (opcode == STWU) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + offset);
}
break;
}
case SRADIX: {
int ra = instr->RAValue();
int rs = instr->RSValue();
int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
intptr_t rs_val = get_register(rs);
intptr_t result = rs_val >> sh;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
case STBCX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int8_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
SetCR0(WriteExB(ra_val + rb_val, rs_val));
break;
}
case STHCX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int16_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
SetCR0(WriteExH(ra_val + rb_val, rs_val));
break;
}
case STWCX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int32_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
SetCR0(WriteExW(ra_val + rb_val, rs_val));
break;
}
case STDCX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int64_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
SetCR0(WriteExDW(ra_val + rb_val, rs_val));
break;
}
case TW: {
// used for call redirection in simulation mode
SoftwareInterrupt(instr);
break;
}
case CMP: {
int ra = instr->RAValue();
int rb = instr->RBValue();
int cr = instr->Bits(25, 23);
uint32_t bf = 0;
#if V8_TARGET_ARCH_PPC64
int L = instr->Bit(21);
if (L) {
#endif
intptr_t ra_val = get_register(ra);
intptr_t rb_val = get_register(rb);
if (ra_val < rb_val) {
bf |= 0x80000000;
}
if (ra_val > rb_val) {
bf |= 0x40000000;
}
if (ra_val == rb_val) {
bf |= 0x20000000;
}
#if V8_TARGET_ARCH_PPC64
} else {
int32_t ra_val = get_register(ra);
int32_t rb_val = get_register(rb);
if (ra_val < rb_val) {
bf |= 0x80000000;
}
if (ra_val > rb_val) {
bf |= 0x40000000;
}
if (ra_val == rb_val) {
bf |= 0x20000000;
}
}
#endif
uint32_t condition_mask = 0xF0000000U >> (cr * 4);
uint32_t condition = bf >> (cr * 4);
condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
break;
}
case SUBFCX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
// int oe = instr->Bit(10);
uintptr_t ra_val = get_register(ra);
uintptr_t rb_val = get_register(rb);
uintptr_t alu_out = ~ra_val + rb_val + 1;
// Set carry
if (ra_val <= rb_val) {
special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
} else {
special_reg_xer_ &= ~0xF0000000;
}
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
// todo - handle OE bit
break;
}
case SUBFEX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
// int oe = instr->Bit(10);
uintptr_t ra_val = get_register(ra);
uintptr_t rb_val = get_register(rb);
uintptr_t alu_out = ~ra_val + rb_val;
if (special_reg_xer_ & 0x20000000) {
alu_out += 1;
}
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(static_cast<intptr_t>(alu_out));
}
// todo - handle OE bit
break;
}
case ADDCX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
// int oe = instr->Bit(10);
uintptr_t ra_val = get_register(ra);
uintptr_t rb_val = get_register(rb);
uintptr_t alu_out = ra_val + rb_val;
// Set carry
if (~ra_val < rb_val) {
special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
} else {
special_reg_xer_ &= ~0xF0000000;
}
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(static_cast<intptr_t>(alu_out));
}
// todo - handle OE bit
break;
}
case ADDEX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
// int oe = instr->Bit(10);
uintptr_t ra_val = get_register(ra);
uintptr_t rb_val = get_register(rb);
uintptr_t alu_out = ra_val + rb_val;
if (special_reg_xer_ & 0x20000000) {
alu_out += 1;
}
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(static_cast<intptr_t>(alu_out));
}
// todo - handle OE bit
break;
}
case MULHWX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val;
// High 32 bits of the result is undefined,
// Which is simulated here by adding random bits.
alu_out = (alu_out >> 32) | 0x421000000000000;
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(static_cast<intptr_t>(alu_out));
}
break;
}
case MULHWUX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uint32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
uint32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
uint64_t alu_out = (uint64_t)ra_val * (uint64_t)rb_val;
// High 32 bits of the result is undefined,
// Which is simulated here by adding random bits.
alu_out = (alu_out >> 32) | 0x421000000000000;
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(static_cast<intptr_t>(alu_out));
}
break;
}
case MULHD: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int64_t ra_val = get_register(ra);
int64_t rb_val = get_register(rb);
int64_t alu_out = base::bits::SignedMulHigh64(ra_val, rb_val);
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(static_cast<intptr_t>(alu_out));
}
break;
}
case MULHDU: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uint64_t ra_val = get_register(ra);
uint64_t rb_val = get_register(rb);
uint64_t alu_out = base::bits::UnsignedMulHigh64(ra_val, rb_val);
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(static_cast<intptr_t>(alu_out));
}
break;
}
case NEGX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
intptr_t ra_val = get_register(ra);
intptr_t alu_out = 1 + ~ra_val;
#if V8_TARGET_ARCH_PPC64
intptr_t one = 1; // work-around gcc
intptr_t kOverflowVal = (one << 63);
#else
intptr_t kOverflowVal = kMinInt;
#endif
set_register(rt, alu_out);
if (instr->Bit(10)) { // OE bit set
if (ra_val == kOverflowVal) {
special_reg_xer_ |= 0xC0000000; // set SO,OV
} else {
special_reg_xer_ &= ~0x40000000; // clear OV
}
}
if (instr->Bit(0)) { // RC bit set
bool setSO = (special_reg_xer_ & 0x80000000);
SetCR0(alu_out, setSO);
}
break;
}
case SLWX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uint32_t rs_val = get_register(rs);
uintptr_t rb_val = get_register(rb) & 0x3F;
uint32_t result = (rb_val > 31) ? 0 : rs_val << rb_val;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
#if V8_TARGET_ARCH_PPC64
case SLDX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uintptr_t rs_val = get_register(rs);
uintptr_t rb_val = get_register(rb) & 0x7F;
uintptr_t result = (rb_val > 63) ? 0 : rs_val << rb_val;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
case MFVSRD: {
int frt = instr->RTValue();
int ra = instr->RAValue();
int64_t frt_val;
if (!instr->Bit(0)) {
// if double reg (TX=0).
frt_val = get_d_register(frt);
} else {
// if simd reg (TX=1).
DCHECK_EQ(instr->Bit(0), 1);
frt_val = get_simd_register_by_lane<int64_t>(frt, 0);
}
set_register(ra, frt_val);
break;
}
case MFVSRWZ: {
DCHECK(!instr->Bit(0));
int frt = instr->RTValue();
int ra = instr->RAValue();
int64_t frt_val = get_d_register(frt);
set_register(ra, static_cast<uint32_t>(frt_val));
break;
}
case MTVSRD: {
int frt = instr->RTValue();
int ra = instr->RAValue();
int64_t ra_val = get_register(ra);
if (!instr->Bit(0)) {
// if double reg (TX=0).
set_d_register(frt, ra_val);
} else {
// if simd reg (TX=1).
DCHECK_EQ(instr->Bit(0), 1);
set_simd_register_by_lane<int64_t>(frt, 0,
static_cast<int64_t>(ra_val));
// Low 64 bits of the result is undefined,
// Which is simulated here by adding random bits.
set_simd_register_by_lane<int64_t>(
frt, 1, static_cast<int64_t>(0x123456789ABCD));
}
break;
}
case MTVSRDD: {
int xt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
set_simd_register_by_lane<int64_t>(
xt, 0, static_cast<int64_t>(get_register(ra)));
set_simd_register_by_lane<int64_t>(
xt, 1, static_cast<int64_t>(get_register(rb)));
break;
}
case MTVSRWA: {
DCHECK(!instr->Bit(0));
int frt = instr->RTValue();
int ra = instr->RAValue();
int64_t ra_val = static_cast<int32_t>(get_register(ra));
set_d_register(frt, ra_val);
break;
}
case MTVSRWZ: {
DCHECK(!instr->Bit(0));
int frt = instr->RTValue();
int ra = instr->RAValue();
uint64_t ra_val = static_cast<uint32_t>(get_register(ra));
set_d_register(frt, ra_val);
break;
}
#endif
case CNTLZWX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
uintptr_t rs_val = get_register(rs);
uintptr_t count = 0;
int n = 0;
uintptr_t bit = 0x80000000;
for (; n < 32; n++) {
if (bit & rs_val) break;
count++;
bit >>= 1;
}
set_register(ra, count);
if (instr->Bit(0)) { // RC Bit set
int bf = 0;
if (count > 0) {
bf |= 0x40000000;
}
if (count == 0) {
bf |= 0x20000000;
}
condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
}
break;
}
case CNTLZDX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
uintptr_t rs_val = get_register(rs);
uintptr_t count = 0;
int n = 0;
uintptr_t bit = 0x8000000000000000UL;
for (; n < 64; n++) {
if (bit & rs_val) break;
count++;
bit >>= 1;
}
set_register(ra, count);
if (instr->Bit(0)) { // RC Bit set
int bf = 0;
if (count > 0) {
bf |= 0x40000000;
}
if (count == 0) {
bf |= 0x20000000;
}
condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
}
break;
}
case CNTTZWX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
uint32_t rs_val = static_cast<uint32_t>(get_register(rs));
uintptr_t count = rs_val == 0 ? 32 : __builtin_ctz(rs_val);
set_register(ra, count);
if (instr->Bit(0)) { // RC Bit set
int bf = 0;
if (count > 0) {
bf |= 0x40000000;
}
if (count == 0) {
bf |= 0x20000000;
}
condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
}
break;
}
case CNTTZDX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
uint64_t rs_val = get_register(rs);
uintptr_t count = rs_val == 0 ? 64 : __builtin_ctzl(rs_val);
set_register(ra, count);
if (instr->Bit(0)) { // RC Bit set
int bf = 0;
if (count > 0) {
bf |= 0x40000000;
}
if (count == 0) {
bf |= 0x20000000;
}
condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
}
break;
}
case ANDX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = rs_val & rb_val;
set_register(ra, alu_out);
if (instr->Bit(0)) { // RC Bit set
SetCR0(alu_out);
}
break;
}
case ANDCX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = rs_val & ~rb_val;
set_register(ra, alu_out);
if (instr->Bit(0)) { // RC Bit set
SetCR0(alu_out);
}
break;
}
case CMPL: {
int ra = instr->RAValue();
int rb = instr->RBValue();
int cr = instr->Bits(25, 23);
uint32_t bf = 0;
#if V8_TARGET_ARCH_PPC64
int L = instr->Bit(21);
if (L) {
#endif
uintptr_t ra_val = get_register(ra);
uintptr_t rb_val = get_register(rb);
if (ra_val < rb_val) {
bf |= 0x80000000;
}
if (ra_val > rb_val) {
bf |= 0x40000000;
}
if (ra_val == rb_val) {
bf |= 0x20000000;
}
#if V8_TARGET_ARCH_PPC64
} else {
uint32_t ra_val = get_register(ra);
uint32_t rb_val = get_register(rb);
if (ra_val < rb_val) {
bf |= 0x80000000;
}
if (ra_val > rb_val) {
bf |= 0x40000000;
}
if (ra_val == rb_val) {
bf |= 0x20000000;
}
}
#endif
uint32_t condition_mask = 0xF0000000U >> (cr * 4);
uint32_t condition = bf >> (cr * 4);
condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
break;
}
case SUBFX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
// int oe = instr->Bit(10);
intptr_t ra_val = get_register(ra);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = rb_val - ra_val;
// todo - figure out underflow
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC Bit set
SetCR0(alu_out);
}
// todo - handle OE bit
break;
}
case ADDZEX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
intptr_t ra_val = get_register(ra);
if (special_reg_xer_ & 0x20000000) {
ra_val += 1;
}
set_register(rt, ra_val);
if (instr->Bit(0)) { // RC bit set
SetCR0(ra_val);
}
// todo - handle OE bit
break;
}
case NORX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = ~(rs_val | rb_val);
set_register(ra, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
break;
}
case MULLW: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
int32_t alu_out = ra_val * rb_val;
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
// todo - handle OE bit
break;
}
#if V8_TARGET_ARCH_PPC64
case MULLD: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int64_t ra_val = get_register(ra);
int64_t rb_val = get_register(rb);
int64_t alu_out = ra_val * rb_val;
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
// todo - handle OE bit
break;
}
#endif
case DIVW: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int32_t ra_val = get_register(ra);
int32_t rb_val = get_register(rb);
bool overflow = (ra_val == kMinInt && rb_val == -1);
// result is undefined if divisor is zero or if operation
// is 0x80000000 / -1.
int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val;
set_register(rt, alu_out);
if (instr->Bit(10)) { // OE bit set
if (overflow) {
special_reg_xer_ |= 0xC0000000; // set SO,OV
} else {
special_reg_xer_ &= ~0x40000000; // clear OV
}
}
if (instr->Bit(0)) { // RC bit set
bool setSO = (special_reg_xer_ & 0x80000000);
SetCR0(alu_out, setSO);
}
break;
}
case DIVWU: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uint32_t ra_val = get_register(ra);
uint32_t rb_val = get_register(rb);
bool overflow = (rb_val == 0);
// result is undefined if divisor is zero
uint32_t alu_out = (overflow) ? -1 : ra_val / rb_val;
set_register(rt, alu_out);
if (instr->Bit(10)) { // OE bit set
if (overflow) {
special_reg_xer_ |= 0xC0000000; // set SO,OV
} else {
special_reg_xer_ &= ~0x40000000; // clear OV
}
}
if (instr->Bit(0)) { // RC bit set
bool setSO = (special_reg_xer_ & 0x80000000);
SetCR0(alu_out, setSO);
}
break;
}
#if V8_TARGET_ARCH_PPC64
case DIVD: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int64_t ra_val = get_register(ra);
int64_t rb_val = get_register(rb);
int64_t one = 1; // work-around gcc
int64_t kMinLongLong = (one << 63);
// result is undefined if divisor is zero or if operation
// is 0x80000000_00000000 / -1.
int64_t alu_out =
(rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
? -1
: ra_val / rb_val;
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
// todo - handle OE bit
break;
}
case DIVDU: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uint64_t ra_val = get_register(ra);
uint64_t rb_val = get_register(rb);
// result is undefined if divisor is zero
uint64_t alu_out = (rb_val == 0) ? -1 : ra_val / rb_val;
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
// todo - handle OE bit
break;
}
#endif
case ADDX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
// int oe = instr->Bit(10);
intptr_t ra_val = get_register(ra);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = ra_val + rb_val;
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
// todo - handle OE bit
break;
}
case XORX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = rs_val ^ rb_val;
set_register(ra, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
break;
}
case ORX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = rs_val | rb_val;
set_register(ra, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
break;
}
case ORC: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = rs_val | ~rb_val;
set_register(ra, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
break;
}
case MFSPR: {
int rt = instr->RTValue();
int spr = instr->Bits(20, 11);
if (spr != 256) {
UNIMPLEMENTED(); // Only LRLR supported
}
set_register(rt, special_reg_lr_);
break;
}
case MTSPR: {
int rt = instr->RTValue();
intptr_t rt_val = get_register(rt);
int spr = instr->Bits(20, 11);
if (spr == 256) {
special_reg_lr_ = rt_val;
} else if (spr == 288) {
special_reg_ctr_ = rt_val;
} else if (spr == 32) {
special_reg_xer_ = rt_val;
} else {
UNIMPLEMENTED(); // Only LR supported
}
break;
}
case MFCR: {
int rt = instr->RTValue();
set_register(rt, condition_reg_);
break;
}
case STWUX:
case STWX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int32_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
WriteW(ra_val + rb_val, rs_val);
if (opcode == STWUX) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case STBUX:
case STBX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int8_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
WriteB(ra_val + rb_val, rs_val);
if (opcode == STBUX) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case STHUX:
case STHX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int16_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
WriteH(ra_val + rb_val, rs_val);
if (opcode == STHUX) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case LWZX:
case LWZUX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
set_register(rt, ReadWU(ra_val + rb_val));
if (opcode == LWZUX) {
DCHECK(ra != 0 && ra != rt);
set_register(ra, ra_val + rb_val);
}
break;
}
#if V8_TARGET_ARCH_PPC64
case LWAX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
set_register(rt, ReadW(ra_val + rb_val));
break;
}
case LDX:
case LDUX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
intptr_t result = ReadDW(ra_val + rb_val);
set_register(rt, result);
if (opcode == LDUX) {
DCHECK(ra != 0 && ra != rt);
set_register(ra, ra_val + rb_val);
}
break;
}
case LDBRX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
intptr_t result = ByteReverse<int64_t>(ReadDW(ra_val + rb_val));
set_register(rt, result);
break;
}
case LWBRX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
intptr_t result = ByteReverse<int32_t>(ReadW(ra_val + rb_val));
set_register(rt, result);
break;
}
case STDBRX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
WriteDW(ra_val + rb_val, ByteReverse<int64_t>(rs_val));
break;
}
case STWBRX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
WriteW(ra_val + rb_val, ByteReverse<int32_t>(rs_val));
break;
}
case STHBRX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
WriteH(ra_val + rb_val, ByteReverse<int16_t>(rs_val));
break;
}
case STDX:
case STDUX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
WriteDW(ra_val + rb_val, rs_val);
if (opcode == STDUX) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + rb_val);
}
break;
}
#endif
case LBZX:
case LBZUX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
set_register(rt, ReadBU(ra_val + rb_val) & 0xFF);
if (opcode == LBZUX) {
DCHECK(ra != 0 && ra != rt);
set_register(ra, ra_val + rb_val);
}
break;
}
case LHZX:
case LHZUX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
set_register(rt, ReadHU(ra_val + rb_val) & 0xFFFF);
if (opcode == LHZUX) {
DCHECK(ra != 0 && ra != rt);
set_register(ra, ra_val + rb_val);
}
break;
}
case LHAX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
set_register(rt, ReadH(ra_val + rb_val));
break;
}
case LBARX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
set_register(rt, ReadExBU(ra_val + rb_val) & 0xFF);
break;
}
case LHARX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
set_register(rt, ReadExHU(ra_val + rb_val));
break;
}
case LWARX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
set_register(rt, ReadExWU(ra_val + rb_val));
break;
}
case LDARX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
set_register(rt, ReadExDWU(ra_val + rb_val));
break;
}
case DCBF: {
// todo - simulate dcbf
break;
}
case ISEL: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int condition_bit = instr->RCValue();
int condition_mask = 0x80000000 >> condition_bit;
intptr_t ra_val = (ra == 0) ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
intptr_t value = (condition_reg_ & condition_mask) ? ra_val : rb_val;
set_register(rt, value);
break;
}
case STBU:
case STB: {
int ra = instr->RAValue();
int rs = instr->RSValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int8_t rs_val = get_register(rs);
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
WriteB(ra_val + offset, rs_val);
if (opcode == STBU) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + offset);
}
break;
}
case LHZU:
case LHZ: {
int ra = instr->RAValue();
int rt = instr->RTValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
uintptr_t result = ReadHU(ra_val + offset) & 0xFFFF;
set_register(rt, result);
if (opcode == LHZU) {
set_register(ra, ra_val + offset);
}
break;
}
case LHA:
case LHAU: {
int ra = instr->RAValue();
int rt = instr->RTValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
intptr_t result = ReadH(ra_val + offset);
set_register(rt, result);
if (opcode == LHAU) {
set_register(ra, ra_val + offset);
}
break;
}
case STHU:
case STH: {
int ra = instr->RAValue();
int rs = instr->RSValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int16_t rs_val = get_register(rs);
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
WriteH(ra_val + offset, rs_val);
if (opcode == STHU) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + offset);
}
break;
}
case LMW:
case STMW: {
UNIMPLEMENTED();
}
case LFSU:
case LFS: {
int frt = instr->RTValue();
int ra = instr->RAValue();
int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int32_t val = ReadW(ra_val + offset);
float* fptr = reinterpret_cast<float*>(&val);
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
// Conversion using double changes sNan to qNan on ia32/x64
if ((val & 0x7F800000) == 0x7F800000) {
int64_t dval = static_cast<int64_t>(val);
dval = ((dval & 0xC0000000) << 32) | ((dval & 0x40000000) << 31) |
((dval & 0x40000000) << 30) | ((dval & 0x7FFFFFFF) << 29) | 0x0;
set_d_register(frt, dval);
} else {
set_d_register_from_double(frt, static_cast<double>(*fptr));
}
#else
set_d_register_from_double(frt, static_cast<double>(*fptr));
#endif
if (opcode == LFSU) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + offset);
}
break;
}
case LFDU:
case LFD: {
int frt = instr->RTValue();
int ra = instr->RAValue();
int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int64_t dptr = ReadDW(ra_val + offset);
set_d_register(frt, dptr);
if (opcode == LFDU) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + offset);
}
break;
}
case STFSU:
V8_FALLTHROUGH;
case STFS: {
int frs = instr->RSValue();
int ra = instr->RAValue();
int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
float frs_val = static_cast<float>(get_double_from_d_register(frs));
int32_t* p;
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
// Conversion using double changes sNan to qNan on ia32/x64
int32_t sval = 0;
int64_t dval = get_d_register(frs);
if ((dval & 0x7FF0000000000000) == 0x7FF0000000000000) {
sval = ((dval & 0xC000000000000000) >> 32) |
((dval & 0x07FFFFFFE0000000) >> 29);
p = &sval;
} else {
p = reinterpret_cast<int32_t*>(&frs_val);
}
#else
p = reinterpret_cast<int32_t*>(&frs_val);
#endif
WriteW(ra_val + offset, *p);
if (opcode == STFSU) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + offset);
}
break;
}
case STFDU:
case STFD: {
int frs = instr->RSValue();
int ra = instr->RAValue();
int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int64_t frs_val = get_d_register(frs);
WriteDW(ra_val + offset, frs_val);
if (opcode == STFDU) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + offset);
}
break;
}
case BRW: {
constexpr int kBitsPerWord = 32;
int rs = instr->RSValue();
int ra = instr->RAValue();
uint64_t rs_val = get_register(rs);
uint32_t rs_high = rs_val >> kBitsPerWord;
uint32_t rs_low = (rs_val << kBitsPerWord) >> kBitsPerWord;
uint64_t result = ByteReverse<int32_t>(rs_high);
result = (result << kBitsPerWord) | ByteReverse<int32_t>(rs_low);
set_register(ra, result);
break;
}
case BRD: {
int rs = instr->RSValue();
int ra = instr->RAValue();
uint64_t rs_val = get_register(rs);
set_register(ra, ByteReverse<int64_t>(rs_val));
break;
}
case FCFIDS: {
// fcfids
int frt = instr->RTValue();
int frb = instr->RBValue();
int64_t frb_val = get_d_register(frb);
double frt_val = static_cast<float>(frb_val);
set_d_register_from_double(frt, frt_val);
return;
}
case FCFIDUS: {
// fcfidus
int frt = instr->RTValue();
int frb = instr->RBValue();
uint64_t frb_val = get_d_register(frb);
double frt_val = static_cast<float>(frb_val);
set_d_register_from_double(frt, frt_val);
return;
}
case FDIV: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frt_val = fra_val / frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case FSUB: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frt_val = fra_val - frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case FADD: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frt_val = fra_val + frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case FSQRT: {
int frt = instr->RTValue();
int frb = instr->RBValue();
double frb_val = get_double_from_d_register(frb);
double frt_val = std::sqrt(frb_val);
set_d_register_from_double(frt, frt_val);
return;
}
case FSEL: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
int frc = instr->RCValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frc_val = get_double_from_d_register(frc);
double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val);
set_d_register_from_double(frt, frt_val);
return;
}
case FMUL: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frc = instr->RCValue();
double fra_val = get_double_from_d_register(fra);
double frc_val = get_double_from_d_register(frc);
double frt_val = fra_val * frc_val;
set_d_register_from_double(frt, frt_val);
return;
}
case FMSUB: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
int frc = instr->RCValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frc_val = get_double_from_d_register(frc);
double frt_val = (fra_val * frc_val) - frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case FMADD: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
int frc = instr->RCValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frc_val = get_double_from_d_register(frc);
double frt_val = (fra_val * frc_val) + frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case FCMPU: {
int fra = instr->RAValue();
int frb = instr->RBValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
int cr = instr->Bits(25, 23);
int bf = 0;
if (fra_val < frb_val) {
bf |= 0x80000000;
}
if (fra_val > frb_val) {
bf |= 0x40000000;
}
if (fra_val == frb_val) {
bf |= 0x20000000;
}
if (std::isunordered(fra_val, frb_val)) {
bf |= 0x10000000;
}
int condition_mask = 0xF0000000 >> (cr * 4);
int condition = bf >> (cr * 4);
condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
return;
}
case FRIN: {
int frt = instr->RTValue();
int frb = instr->RBValue();
double frb_val = get_double_from_d_register(frb);
double frt_val = std::round(frb_val);
set_d_register_from_double(frt, frt_val);
if (instr->Bit(0)) { // RC bit set
// UNIMPLEMENTED();
}
return;
}
case FRIZ: {
int frt = instr->RTValue();
int frb = instr->RBValue();
double frb_val = get_double_from_d_register(frb);
double frt_val = std::trunc(frb_val);
set_d_register_from_double(frt, frt_val);
if (instr->Bit(0)) { // RC bit set
// UNIMPLEMENTED();
}
return;
}
case FRIP: {
int frt = instr->RTValue();
int frb = instr->RBValue();
double frb_val = get_double_from_d_register(frb);
double frt_val = std::ceil(frb_val);
set_d_register_from_double(frt, frt_val);
if (instr->Bit(0)) { // RC bit set
// UNIMPLEMENTED();
}
return;
}
case FRIM: {
int frt = instr->RTValue();
int frb = instr->RBValue();
double frb_val = get_double_from_d_register(frb);
double frt_val = std::floor(frb_val);
set_d_register_from_double(frt, frt_val);
if (instr->Bit(0)) { // RC bit set
// UNIMPLEMENTED();
}
return;
}
case FRSP: {
int frt = instr->RTValue();
int frb = instr->RBValue();
// frsp round 8-byte double-precision value to
// single-precision value
double frb_val = get_double_from_d_register(frb);
double frt_val = static_cast<float>(frb_val);
set_d_register_from_double(frt, frt_val);
if (instr->Bit(0)) { // RC bit set
// UNIMPLEMENTED();
}
return;
}
case FCFID: {
int frt = instr->RTValue();
int frb = instr->RBValue();
int64_t frb_val = get_d_register(frb);
double frt_val = static_cast<double>(frb_val);
set_d_register_from_double(frt, frt_val);
return;
}
case FCFIDU: {
int frt = instr->RTValue();
int frb = instr->RBValue();
uint64_t frb_val = get_d_register(frb);
double frt_val = static_cast<double>(frb_val);
set_d_register_from_double(frt, frt_val);
return;
}
case FCTID:
case FCTIDZ: {
int frt = instr->RTValue();
int frb = instr->RBValue();
double frb_val = get_double_from_d_register(frb);
int mode = (opcode == FCTIDZ) ? kRoundToZero
: (fp_condition_reg_ & kFPRoundingModeMask);
int64_t frt_val;
int64_t one = 1; // work-around gcc
int64_t kMinVal = (one << 63);
int64_t kMaxVal = kMinVal - 1;
bool invalid_convert = false;
if (std::isnan(frb_val)) {
frt_val = kMinVal;
invalid_convert = true;
} else {
switch (mode) {
case kRoundToZero:
frb_val = std::trunc(frb_val);
break;
case kRoundToPlusInf:
frb_val = std::ceil(frb_val);
break;
case kRoundToMinusInf:
frb_val = std::floor(frb_val);
break;
default:
UNIMPLEMENTED(); // Not used by V8.
}
if (frb_val < static_cast<double>(kMinVal)) {
frt_val = kMinVal;
invalid_convert = true;
} else if (frb_val >= static_cast<double>(kMaxVal)) {
frt_val = kMaxVal;
invalid_convert = true;
} else {
frt_val = (int64_t)frb_val;
}
}
set_d_register(frt, frt_val);
if (invalid_convert) SetFPSCR(VXCVI);
return;
}
case FCTIDU:
case FCTIDUZ: {
int frt = instr->RTValue();
int frb = instr->RBValue();
double frb_val = get_double_from_d_register(frb);
int mode = (opcode == FCTIDUZ)
? kRoundToZero
: (fp_condition_reg_ & kFPRoundingModeMask);
uint64_t frt_val;
uint64_t kMinVal = 0;
uint64_t kMaxVal = kMinVal - 1;
bool invalid_convert = false;
if (std::isnan(frb_val)) {
frt_val = kMinVal;
invalid_convert = true;
} else {
switch (mode) {
case kRoundToZero:
frb_val = std::trunc(frb_val);
break;
case kRoundToPlusInf:
frb_val = std::ceil(frb_val);
break;
case kRoundToMinusInf:
frb_val = std::floor(frb_val);
break;
default:
UNIMPLEMENTED(); // Not used by V8.
}
if (frb_val < static_cast<double>(kMinVal)) {
frt_val = kMinVal;
invalid_convert = true;
} else if (frb_val >= static_cast<double>(kMaxVal)) {
frt_val = kMaxVal;
invalid_convert = true;
} else {
frt_val = (uint64_t)frb_val;
}
}
set_d_register(frt, frt_val);
if (invalid_convert) SetFPSCR(VXCVI);
return;
}
case FCTIW:
case FCTIWZ: {
int frt = instr->RTValue();
int frb = instr->RBValue();
double frb_val = get_double_from_d_register(frb);
int mode = (opcode == FCTIWZ) ? kRoundToZero
: (fp_condition_reg_ & kFPRoundingModeMask);
int64_t frt_val;
int64_t kMinVal = kMinInt;
int64_t kMaxVal = kMaxInt;
bool invalid_convert = false;
if (std::isnan(frb_val)) {
frt_val = kMinVal;
} else {
switch (mode) {
case kRoundToZero:
frb_val = std::trunc(frb_val);
break;
case kRoundToPlusInf:
frb_val = std::ceil(frb_val);
break;
case kRoundToMinusInf:
frb_val = std::floor(frb_val);
break;
case kRoundToNearest: {
double orig = frb_val;
frb_val = lround(frb_val);
// Round to even if exactly halfway. (lround rounds up)
if (std::fabs(frb_val - orig) == 0.5 && ((int64_t)frb_val % 2)) {
frb_val += ((frb_val > 0) ? -1.0 : 1.0);
}
break;
}
default:
UNIMPLEMENTED(); // Not used by V8.
}
if (frb_val < kMinVal) {
frt_val = kMinVal;
invalid_convert = true;
} else if (frb_val > kMaxVal) {
frt_val = kMaxVal;
invalid_convert = true;
} else {
frt_val = (int64_t)frb_val;
}
}
set_d_register(frt, frt_val);
if (invalid_convert) SetFPSCR(VXCVI);
return;
}
case FCTIWU:
case FCTIWUZ: {
int frt = instr->RTValue();
int frb = instr->RBValue();
double frb_val = get_double_from_d_register(frb);
int mode = (opcode == FCTIWUZ)
? kRoundToZero
: (fp_condition_reg_ & kFPRoundingModeMask);
uint64_t frt_val;
uint64_t kMinVal = kMinUInt32;
uint64_t kMaxVal = kMaxUInt32;
bool invalid_convert = false;
if (std::isnan(frb_val)) {
frt_val = kMinVal;
} else {
switch (mode) {
case kRoundToZero:
frb_val = std::trunc(frb_val);
break;
case kRoundToPlusInf:
frb_val = std::ceil(frb_val);
break;
case kRoundToMinusInf:
frb_val = std::floor(frb_val);
break;
default:
UNIMPLEMENTED(); // Not used by V8.
}
if (frb_val < kMinVal) {
frt_val = kMinVal;
invalid_convert = true;
} else if (frb_val > kMaxVal) {
frt_val = kMaxVal;
invalid_convert = true;
} else {
frt_val = (uint64_t)frb_val;
}
}
set_d_register(frt, frt_val);
if (invalid_convert) SetFPSCR(VXCVI);
return;
}
case FNEG: {
int frt = instr->RTValue();
int frb = instr->RBValue();
double frb_val = get_double_from_d_register(frb);
double frt_val = -frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case FCPSGN: {
int frt = instr->RTValue();
int frb = instr->RBValue();
int fra = instr->RAValue();
double frb_val = get_double_from_d_register(frb);
double fra_val = get_double_from_d_register(fra);
double frt_val = std::copysign(frb_val, fra_val);
set_d_register_from_double(frt, frt_val);
return;
}
case FMR: {
int frt = instr->RTValue();
int frb = instr->RBValue();
int64_t frb_val = get_d_register(frb);
set_d_register(frt, frb_val);
return;
}
case MTFSFI: {
int bf = instr->Bits(25, 23);
int imm = instr->Bits(15, 12);
int fp_condition_mask = 0xF0000000 >> (bf * 4);
fp_condition_reg_ &= ~fp_condition_mask;
fp_condition_reg_ |= (imm << (28 - (bf * 4)));
if (instr->Bit(0)) { // RC bit set
condition_reg_ &= 0xF0FFFFFF;
condition_reg_ |= (imm << 23);
}
return;
}
case MTFSF: {
int frb = instr->RBValue();
int64_t frb_dval = get_d_register(frb);
int32_t frb_ival = static_cast<int32_t>((frb_dval)&0xFFFFFFFF);
int l = instr->Bits(25, 25);
if (l == 1) {
fp_condition_reg_ = frb_ival;
} else {
UNIMPLEMENTED();
}
if (instr->Bit(0)) { // RC bit set
UNIMPLEMENTED();
// int w = instr->Bits(16, 16);
// int flm = instr->Bits(24, 17);
}
return;
}
case MFFS: {
int frt = instr->RTValue();
int64_t lval = static_cast<int64_t>(fp_condition_reg_);
set_d_register(frt, lval);
return;
}
case MCRFS: {
int bf = instr->Bits(25, 23);
int bfa = instr->Bits(20, 18);
int cr_shift = (7 - bf) * CRWIDTH;
int fp_shift = (7 - bfa) * CRWIDTH;
int field_val = (fp_condition_reg_ >> fp_shift) & 0xF;
condition_reg_ &= ~(0x0F << cr_shift);
condition_reg_ |= (field_val << cr_shift);
// Clear copied exception bits
switch (bfa) {
case 5:
ClearFPSCR(VXSOFT);
ClearFPSCR(VXSQRT);
ClearFPSCR(VXCVI);
break;
default:
UNIMPLEMENTED();
}
return;
}
case MTFSB0: {
int bt = instr->Bits(25, 21);
ClearFPSCR(bt);
if (instr->Bit(0)) { // RC bit set
UNIMPLEMENTED();
}
return;
}
case MTFSB1: {
int bt = instr->Bits(25, 21);
SetFPSCR(bt);
if (instr->Bit(0)) { // RC bit set
UNIMPLEMENTED();
}
return;
}
case FABS: {
int frt = instr->RTValue();
int frb = instr->RBValue();
double frb_val = get_double_from_d_register(frb);
double frt_val = std::fabs(frb_val);
set_d_register_from_double(frt, frt_val);
return;
}
#if V8_TARGET_ARCH_PPC64
case RLDICL: {
int ra = instr->RAValue();
int rs = instr->RSValue();
uintptr_t rs_val = get_register(rs);
int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
DCHECK(sh >= 0 && sh <= 63);
DCHECK(mb >= 0 && mb <= 63);
uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
uintptr_t mask = 0xFFFFFFFFFFFFFFFF >> mb;
result &= mask;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
return;
}
case RLDICR: {
int ra = instr->RAValue();
int rs = instr->RSValue();
uintptr_t rs_val = get_register(rs);
int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
DCHECK(sh >= 0 && sh <= 63);
DCHECK(me >= 0 && me <= 63);
uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
uintptr_t mask = 0xFFFFFFFFFFFFFFFF << (63 - me);
result &= mask;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
return;
}
case RLDIC: {
int ra = instr->RAValue();
int rs = instr->RSValue();
uintptr_t rs_val = get_register(rs);
int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
DCHECK(sh >= 0 && sh <= 63);
DCHECK(mb >= 0 && mb <= 63);
uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
uintptr_t mask = (0xFFFFFFFFFFFFFFFF >> mb) & (0xFFFFFFFFFFFFFFFF << sh);
result &= mask;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
return;
}
case RLDIMI: {
int ra = instr->RAValue();
int rs = instr->RSValue();
uintptr_t rs_val = get_register(rs);
intptr_t ra_val = get_register(ra);
int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
int me = 63 - sh;
uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
uintptr_t mask = 0;
if (mb < me + 1) {
uintptr_t bit = 0x8000000000000000 >> mb;
for (; mb <= me; mb++) {
mask |= bit;
bit >>= 1;
}
} else if (mb == me + 1) {
mask = 0xFFFFFFFFFFFFFFFF;
} else { // mb > me+1
uintptr_t bit = 0x8000000000000000 >> (me + 1); // needs to be tested
mask = 0xFFFFFFFFFFFFFFFF;
for (; me < mb; me++) {
mask ^= bit;
bit >>= 1;
}
}
result &= mask;
ra_val &= ~mask;
result |= ra_val;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
return;
}
case RLDCL: {
int ra = instr->RAValue();
int rs = instr->RSValue();
int rb = instr->RBValue();
uintptr_t rs_val = get_register(rs);
uintptr_t rb_val = get_register(rb);
int sh = (rb_val & 0x3F);
int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
DCHECK(sh >= 0 && sh <= 63);
DCHECK(mb >= 0 && mb <= 63);
uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
uintptr_t mask = 0xFFFFFFFFFFFFFFFF >> mb;
result &= mask;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
return;
}
case LD:
case LDU:
case LWA: {
int ra = instr->RAValue();
int rt = instr->RTValue();
int64_t ra_val = ra == 0 ? 0 : get_register(ra);
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
switch (instr->Bits(1, 0)) {
case 0: { // ld
intptr_t result = ReadDW(ra_val + offset);
set_register(rt, result);
break;
}
case 1: { // ldu
intptr_t result = ReadDW(ra_val + offset);
set_register(rt, result);
DCHECK_NE(ra, 0);
set_register(ra, ra_val + offset);
break;
}
case 2: { // lwa
intptr_t result = ReadW(ra_val + offset);
set_register(rt, result);
break;
}
}
break;
}
case STD:
case STDU: {
int ra = instr->RAValue();
int rs = instr->RSValue();
int64_t ra_val = ra == 0 ? 0 : get_register(ra);
int64_t rs_val = get_register(rs);
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
WriteDW(ra_val + offset, rs_val);
if (opcode == STDU) {
DCHECK_NE(ra, 0);
set_register(ra, ra_val + offset);
}
break;
}
#endif
case XSADDDP: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frt_val = fra_val + frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case XSSUBDP: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frt_val = fra_val - frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case XSMULDP: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frt_val = fra_val * frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case XSDIVDP: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frt_val = fra_val / frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case MTCRF: {
int rs = instr->RSValue();
uint32_t rs_val = static_cast<int32_t>(get_register(rs));
uint8_t fxm = instr->Bits(19, 12);
uint8_t bit_mask = 0x80;
const int field_bit_count = 4;
const int max_field_index = 7;
uint32_t result = 0;
for (int i = 0; i <= max_field_index; i++) {
result <<= field_bit_count;
uint32_t source = condition_reg_;
if ((bit_mask & fxm) != 0) {
// take it from rs.
source = rs_val;
}
result |= ((source << i * field_bit_count) >> i * field_bit_count) >>
(max_field_index - i) * field_bit_count;
bit_mask >>= 1;
}
condition_reg_ = result;
break;
}
// Vector instructions.
case LVX: {
DECODE_VX_INSTRUCTION(vrt, ra, rb, T)
GET_ADDRESS(ra, rb, ra_val, rb_val)
intptr_t addr = (ra_val + rb_val) & 0xFFFFFFFFFFFFFFF0;
simdr_t* ptr = reinterpret_cast<simdr_t*>(addr);
set_simd_register(vrt, *ptr);
break;
}
case STVX: {
DECODE_VX_INSTRUCTION(vrs, ra, rb, S)
GET_ADDRESS(ra, rb, ra_val, rb_val)
__int128 vrs_val = base::bit_cast<__int128>(get_simd_register(vrs).int8);
WriteQW((ra_val + rb_val) & 0xFFFFFFFFFFFFFFF0, vrs_val);
break;
}
case LXVD: {
DECODE_VX_INSTRUCTION(xt, ra, rb, T)
GET_ADDRESS(ra, rb, ra_val, rb_val)
set_simd_register_by_lane<int64_t>(xt, 0, ReadDW(ra_val + rb_val));
set_simd_register_by_lane<int64_t>(
xt, 1, ReadDW(ra_val + rb_val + kSystemPointerSize));
break;
}
case LXVX: {
DECODE_VX_INSTRUCTION(vrt, ra, rb, T)
GET_ADDRESS(ra, rb, ra_val, rb_val)
intptr_t addr = ra_val + rb_val;
simdr_t* ptr = reinterpret_cast<simdr_t*>(addr);
set_simd_register(vrt, *ptr);
break;
}
case STXVD: {
DECODE_VX_INSTRUCTION(xs, ra, rb, S)
GET_ADDRESS(ra, rb, ra_val, rb_val)
WriteDW(ra_val + rb_val, get_simd_register_by_lane<int64_t>(xs, 0));
WriteDW(ra_val + rb_val + kSystemPointerSize,
get_simd_register_by_lane<int64_t>(xs, 1));
break;
}
case STXVX: {
DECODE_VX_INSTRUCTION(vrs, ra, rb, S)
GET_ADDRESS(ra, rb, ra_val, rb_val)
intptr_t addr = ra_val + rb_val;
__int128 vrs_val = base::bit_cast<__int128>(get_simd_register(vrs).int8);
WriteQW(addr, vrs_val);
break;
}
case LXSIBZX: {
DECODE_VX_INSTRUCTION(xt, ra, rb, T)
GET_ADDRESS(ra, rb, ra_val, rb_val)
set_simd_register_by_lane<uint64_t>(xt, 0, ReadBU(ra_val + rb_val));
break;
}
case LXSIHZX: {
DECODE_VX_INSTRUCTION(xt, ra, rb, T)
GET_ADDRESS(ra, rb, ra_val, rb_val)
set_simd_register_by_lane<uint64_t>(xt, 0, ReadHU(ra_val + rb_val));
break;
}
case LXSIWZX: {
DECODE_VX_INSTRUCTION(xt, ra, rb, T)
GET_ADDRESS(ra, rb, ra_val, rb_val)
set_simd_register_by_lane<uint64_t>(xt, 0, ReadWU(ra_val + rb_val));
break;
}
case LXSDX: {
DECODE_VX_INSTRUCTION(xt, ra, rb, T)
GET_ADDRESS(ra, rb, ra_val, rb_val)
set_simd_register_by_lane<int64_t>(xt, 0, ReadDW(ra_val + rb_val));
break;
}
case STXSIBX: {
DECODE_VX_INSTRUCTION(xs, ra, rb, S)
GET_ADDRESS(ra, rb, ra_val, rb_val)
WriteB(ra_val + rb_val, get_simd_register_by_lane<int8_t>(xs, 7));
break;
}
case STXSIHX: {
DECODE_VX_INSTRUCTION(xs, ra, rb, S)
GET_ADDRESS(ra, rb, ra_val, rb_val)
WriteH(ra_val + rb_val, get_simd_register_by_lane<int16_t>(xs, 3));
break;
}
case STXSIWX: {
DECODE_VX_INSTRUCTION(xs, ra, rb, S)
GET_ADDRESS(ra, rb, ra_val, rb_val)
WriteW(ra_val + rb_val, get_simd_register_by_lane<int32_t>(xs, 1));
break;
}
case STXSDX: {
DECODE_VX_INSTRUCTION(xs, ra, rb, S)
GET_ADDRESS(ra, rb, ra_val, rb_val)
WriteDW(ra_val + rb_val, get_simd_register_by_lane<int64_t>(xs, 0));
break;
}
case XXBRQ: {
int t = instr->RTValue();
int b = instr->RBValue();
__int128 xb_val = base::bit_cast<__int128>(get_simd_register(b).int8);
__int128 xb_val_reversed = __builtin_bswap128(xb_val);
simdr_t simdr_xb = base::bit_cast<simdr_t>(xb_val_reversed);
set_simd_register(t, simdr_xb);
break;
}
#define VSPLT(type) \
uint8_t uim = instr->Bits(19, 16); \
int vrt = instr->RTValue(); \
int vrb = instr->RBValue(); \
type value = get_simd_register_by_lane<type>(vrb, uim); \
FOR_EACH_LANE(i, type) { set_simd_register_by_lane<type>(vrt, i, value); }
case VSPLTW: {
VSPLT(int32_t)
break;
}
case VSPLTH: {
VSPLT(int16_t)
break;
}
case VSPLTB: {
VSPLT(int8_t)
break;
}
case XXSPLTIB: {
int8_t imm8 = instr->Bits(18, 11);
int t = instr->RTValue();
FOR_EACH_LANE(i, int8_t) {
set_simd_register_by_lane<int8_t>(t, i, imm8);
}
break;
}
#undef VSPLT
#define VSPLTI(type) \
type sim = static_cast<type>(SIGN_EXT_IMM5(instr->Bits(20, 16))); \
int vrt = instr->RTValue(); \
FOR_EACH_LANE(i, type) { set_simd_register_by_lane<type>(vrt, i, sim); }
case VSPLTISW: {
VSPLTI(int32_t)
break;
}
case VSPLTISH: {
VSPLTI(int16_t)
break;
}
case VSPLTISB: {
VSPLTI(int8_t)
break;
}
#undef VSPLTI
#define VINSERT(type, element) \
uint8_t uim = instr->Bits(19, 16); \
int vrt = instr->RTValue(); \
int vrb = instr->RBValue(); \
set_simd_register_bytes<type>( \
vrt, uim, get_simd_register_by_lane<type>(vrb, element));
case VINSERTD: {
VINSERT(int64_t, 0)
break;
}
case VINSERTW: {
VINSERT(int32_t, 1)
break;
}
case VINSERTH: {
VINSERT(int16_t, 3)
break;
}
case VINSERTB: {
VINSERT(int8_t, 7)
break;
}
#undef VINSERT
#define VINSERT_IMMEDIATE(type) \
uint8_t uim = instr->Bits(19, 16); \
int vrt = instr->RTValue(); \
int rb = instr->RBValue(); \
type src = static_cast<type>(get_register(rb)); \
set_simd_register_bytes<type>(vrt, uim, src);
case VINSD: {
VINSERT_IMMEDIATE(int64_t)
break;
}
case VINSW: {
VINSERT_IMMEDIATE(int32_t)
break;
}
#undef VINSERT_IMMEDIATE
#define VEXTRACT(type, element) \
uint8_t uim = instr->Bits(19, 16); \
int vrt = instr->RTValue(); \
int vrb = instr->RBValue(); \
type val = get_simd_register_bytes<type>(vrb, uim); \
set_simd_register_by_lane<uint64_t>(vrt, 0, 0); \
set_simd_register_by_lane<uint64_t>(vrt, 1, 0); \
set_simd_register_by_lane<type>(vrt, element, val);
case VEXTRACTD: {
VEXTRACT(uint64_t, 0)
break;
}
case VEXTRACTUW: {
VEXTRACT(uint32_t, 1)
break;
}
case VEXTRACTUH: {
VEXTRACT(uint16_t, 3)
break;
}
case VEXTRACTUB: {
VEXTRACT(uint8_t, 7)
break;
}
#undef VEXTRACT
#define VECTOR_LOGICAL_OP(expr) \
DECODE_VX_INSTRUCTION(t, a, b, T) \
FOR_EACH_LANE(i, int64_t) { \
int64_t a_val = get_simd_register_by_lane<int64_t>(a, i); \
int64_t b_val = get_simd_register_by_lane<int64_t>(b, i); \
set_simd_register_by_lane<int64_t>(t, i, expr); \
}
case VAND: {
VECTOR_LOGICAL_OP(a_val & b_val)
break;
}
case VANDC: {
VECTOR_LOGICAL_OP(a_val & (~b_val))
break;
}
case VOR: {
VECTOR_LOGICAL_OP(a_val | b_val)
break;
}
case VNOR: {
VECTOR_LOGICAL_OP(~(a_val | b_val))
break;
}
case VXOR: {
VECTOR_LOGICAL_OP(a_val ^ b_val)
break;
}
#undef VECTOR_LOGICAL_OP
#define VECTOR_ARITHMETIC_OP(type, op) \
DECODE_VX_INSTRUCTION(t, a, b, T) \
FOR_EACH_LANE(i, type) { \
set_simd_register_by_lane<type>( \
t, i, \
get_simd_register_by_lane<type>(a, i) \
op get_simd_register_by_lane<type>(b, i)); \
}
case XVADDDP: {
VECTOR_ARITHMETIC_OP(double, +)
break;
}
case XVSUBDP: {
VECTOR_ARITHMETIC_OP(double, -)
break;
}
case XVMULDP: {
VECTOR_ARITHMETIC_OP(double, *)
break;
}
case XVDIVDP: {
VECTOR_ARITHMETIC_OP(double, /)
break;
}
case VADDFP: {
VECTOR_ARITHMETIC_OP(float, +)
break;
}
case VSUBFP: {
VECTOR_ARITHMETIC_OP(float, -)
break;
}
case XVMULSP: {
VECTOR_ARITHMETIC_OP(float, *)
break;
}
case XVDIVSP: {
VECTOR_ARITHMETIC_OP(float, /)
break;
}
case VADDUDM: {
VECTOR_ARITHMETIC_OP(int64_t, +)
break;
}
case VSUBUDM: {
VECTOR_ARITHMETIC_OP(int64_t, -)
break;
}
case VMULLD: {
VECTOR_ARITHMETIC_OP(int64_t, *)
break;
}
case VADDUWM: {
VECTOR_ARITHMETIC_OP(int32_t, +)
break;
}
case VSUBUWM: {
VECTOR_ARITHMETIC_OP(int32_t, -)
break;
}
case VMULUWM: {
VECTOR_ARITHMETIC_OP(int32_t, *)
break;
}
case VADDUHM: {
VECTOR_ARITHMETIC_OP(int16_t, +)
break;
}
case VSUBUHM: {
VECTOR_ARITHMETIC_OP(int16_t, -)
break;
}
case VADDUBM: {
VECTOR_ARITHMETIC_OP(int8_t, +)
break;
}
case VSUBUBM: {
VECTOR_ARITHMETIC_OP(int8_t, -)
break;
}
#define VECTOR_MULTIPLY_EVEN_ODD(input_type, result_type, is_odd) \
DECODE_VX_INSTRUCTION(t, a, b, T) \
size_t i = 0, j = 0, k = 0; \
size_t lane_size = sizeof(input_type); \
if (is_odd) { \
i = 1; \
j = lane_size; \
} \
for (; j < kSimd128Size; i += 2, j += lane_size * 2, k++) { \
result_type src0 = \
static_cast<result_type>(get_simd_register_by_lane<input_type>(a, i)); \
result_type src1 = \
static_cast<result_type>(get_simd_register_by_lane<input_type>(b, i)); \
set_simd_register_by_lane<result_type>(t, k, src0 * src1); \
}
case VMULEUB: {
VECTOR_MULTIPLY_EVEN_ODD(uint8_t, uint16_t, false)
break;
}
case VMULESB: {
VECTOR_MULTIPLY_EVEN_ODD(int8_t, int16_t, false)
break;
}
case VMULOUB: {
VECTOR_MULTIPLY_EVEN_ODD(uint8_t, uint16_t, true)
break;
}
case VMULOSB: {
VECTOR_MULTIPLY_EVEN_ODD(int8_t, int16_t, true)
break;
}
case VMULEUH: {
VECTOR_MULTIPLY_EVEN_ODD(uint16_t, uint32_t, false)
break;
}
case VMULESH: {
VECTOR_MULTIPLY_EVEN_ODD(int16_t, int32_t, false)
break;
}
case VMULOUH: {
VECTOR_MULTIPLY_EVEN_ODD(uint16_t, uint32_t, true)
break;
}
case VMULOSH: {
VECTOR_MULTIPLY_EVEN_ODD(int16_t, int32_t, true)
break;
}
case VMULEUW: {
VECTOR_MULTIPLY_EVEN_ODD(uint32_t, uint64_t, false)
break;
}
case VMULESW: {
VECTOR_MULTIPLY_EVEN_ODD(int32_t, int64_t, false)
break;
}
case VMULOUW: {
VECTOR_MULTIPLY_EVEN_ODD(uint32_t, uint64_t, true)
break;
}
case VMULOSW: {
VECTOR_MULTIPLY_EVEN_ODD(int32_t, int64_t, true)
break;
}
#undef VECTOR_MULTIPLY_EVEN_ODD
#define VECTOR_MERGE(type, is_low_side) \
DECODE_VX_INSTRUCTION(t, a, b, T) \
constexpr size_t index_limit = (kSimd128Size / sizeof(type)) / 2; \
for (size_t i = 0, source_index = is_low_side ? i + index_limit : i; \
i < index_limit; i++, source_index++) { \
set_simd_register_by_lane<type>( \
t, 2 * i, get_simd_register_by_lane<type>(a, source_index)); \
set_simd_register_by_lane<type>( \
t, (2 * i) + 1, get_simd_register_by_lane<type>(b, source_index)); \
}
case VMRGLW: {
VECTOR_MERGE(int32_t, true)
break;
}
case VMRGHW: {
VECTOR_MERGE(int32_t, false)
break;
}
case VMRGLH: {
VECTOR_MERGE(int16_t, true)
break;
}
case VMRGHH: {
VECTOR_MERGE(int16_t, false)
break;
}
#undef VECTOR_MERGE
#undef VECTOR_ARITHMETIC_OP
#define VECTOR_MIN_MAX_OP(type, op) \
DECODE_VX_INSTRUCTION(t, a, b, T) \
FOR_EACH_LANE(i, type) { \
type a_val = get_simd_register_by_lane<type>(a, i); \
type b_val = get_simd_register_by_lane<type>(b, i); \
set_simd_register_by_lane<type>(t, i, a_val op b_val ? a_val : b_val); \
}
case XSMINDP: {
DECODE_VX_INSTRUCTION(t, a, b, T)
double a_val = get_double_from_d_register(a);
double b_val = get_double_from_d_register(b);
set_d_register_from_double(t, VSXFPMin<double>(a_val, b_val));
break;
}
case XSMAXDP: {
DECODE_VX_INSTRUCTION(t, a, b, T)
double a_val = get_double_from_d_register(a);
double b_val = get_double_from_d_register(b);
set_d_register_from_double(t, VSXFPMax<double>(a_val, b_val));
break;
}
case XVMINDP: {
DECODE_VX_INSTRUCTION(t, a, b, T)
FOR_EACH_LANE(i, double) {
double a_val = get_simd_register_by_lane<double>(a, i);
double b_val = get_simd_register_by_lane<double>(b, i);
set_simd_register_by_lane<double>(t, i, VSXFPMin<double>(a_val, b_val));
}
break;
}
case XVMAXDP: {
DECODE_VX_INSTRUCTION(t, a, b, T)
FOR_EACH_LANE(i, double) {
double a_val = get_simd_register_by_lane<double>(a, i);
double b_val = get_simd_register_by_lane<double>(b, i);
set_simd_register_by_lane<double>(t, i, VSXFPMax<double>(a_val, b_val));
}
break;
}
case VMINFP: {
DECODE_VX_INSTRUCTION(t, a, b, T)
FOR_EACH_LANE(i, float) {
float a_val = get_simd_register_by_lane<float>(a, i);
float b_val = get_simd_register_by_lane<float>(b, i);
set_simd_register_by_lane<float>(t, i, VMXFPMin(a_val, b_val));
}
break;
}
case VMAXFP: {
DECODE_VX_INSTRUCTION(t, a, b, T)
FOR_EACH_LANE(i, float) {
float a_val = get_simd_register_by_lane<float>(a, i);
float b_val = get_simd_register_by_lane<float>(b, i);
set_simd_register_by_lane<float>(t, i, VMXFPMax(a_val, b_val));
}
break;
}
case VMINSD: {
VECTOR_MIN_MAX_OP(int64_t, <)
break;
}
case VMINUD: {
VECTOR_MIN_MAX_OP(uint64_t, <)
break;
}
case VMINSW: {
VECTOR_MIN_MAX_OP(int32_t, <)
break;
}
case VMINUW: {
VECTOR_MIN_MAX_OP(uint32_t, <)
break;
}
case VMINSH: {
VECTOR_MIN_MAX_OP(int16_t, <)
break;
}
case VMINUH: {
VECTOR_MIN_MAX_OP(uint16_t, <)
break;
}
case VMINSB: {
VECTOR_MIN_MAX_OP(int8_t, <)
break;
}
case VMINUB: {
VECTOR_MIN_MAX_OP(uint8_t, <)
break;
}
case VMAXSD: {
VECTOR_MIN_MAX_OP(int64_t, >)
break;
}
case VMAXUD: {
VECTOR_MIN_MAX_OP(uint64_t, >)
break;
}
case VMAXSW: {
VECTOR_MIN_MAX_OP(int32_t, >)
break;
}
case VMAXUW: {
VECTOR_MIN_MAX_OP(uint32_t, >)
break;
}
case VMAXSH: {
VECTOR_MIN_MAX_OP(int16_t, >)
break;
}
case VMAXUH: {
VECTOR_MIN_MAX_OP(uint16_t, >)
break;
}
case VMAXSB: {
VECTOR_MIN_MAX_OP(int8_t, >)
break;
}
case VMAXUB: {
VECTOR_MIN_MAX_OP(uint8_t, >)
break;
}
#undef VECTOR_MIN_MAX_OP
#define VECTOR_SHIFT_OP(type, op, mask) \
DECODE_VX_INSTRUCTION(t, a, b, T) \
FOR_EACH_LANE(i, type) { \
set_simd_register_by_lane<type>( \
t, i, \
get_simd_register_by_lane<type>(a, i) \
op(get_simd_register_by_lane<type>(b, i) & mask)); \
}
case VSLD: {
VECTOR_SHIFT_OP(int64_t, <<, 0x3f)
break;
}
case VSRAD: {
VECTOR_SHIFT_OP(int64_t, >>, 0x3f)
break;
}
case VSRD: {
VECTOR_SHIFT_OP(uint64_t, >>, 0x3f)
break;
}
case VSLW: {
VECTOR_SHIFT_OP(int32_t, <<, 0x1f)
break;
}
case VSRAW: {
VECTOR_SHIFT_OP(int32_t, >>, 0x1f)
break;
}
case VSRW: {
VECTOR_SHIFT_OP(uint32_t, >>, 0x1f)
break;
}
case VSLH: {
VECTOR_SHIFT_OP(int16_t, <<, 0xf)
break;
}
case VSRAH: {
VECTOR_SHIFT_OP(int16_t, >>, 0xf)
break;
}
case VSRH: {
VECTOR_SHIFT_OP(uint16_t, >>, 0xf)
break;
}
case VSLB: {
VECTOR_SHIFT_OP(int8_t, <<, 0x7)
break;
}
case VSRAB: {
VECTOR_SHIFT_OP(int8_t, >>, 0x7)
break;
}
case VSRB: {
VECTOR_SHIFT_OP(uint8_t, >>, 0x7)
break;
}
#undef VECTOR_SHIFT_OP
#define VECTOR_COMPARE_OP(type_in, type_out, is_fp, op) \
VectorCompareOp<type_in, type_out>( \
this, instr, is_fp, [](type_in a, type_in b) { return a op b; });
case XVCMPEQDP: {
VECTOR_COMPARE_OP(double, int64_t, true, ==)
break;
}
case XVCMPGEDP: {
VECTOR_COMPARE_OP(double, int64_t, true, >=)
break;
}
case XVCMPGTDP: {
VECTOR_COMPARE_OP(double, int64_t, true, >)
break;
}
case XVCMPEQSP: {
VECTOR_COMPARE_OP(float, int32_t, true, ==)
break;
}
case XVCMPGESP: {
VECTOR_COMPARE_OP(float, int32_t, true, >=)
break;
}
case XVCMPGTSP: {
VECTOR_COMPARE_OP(float, int32_t, true, >)
break;
}
case VCMPEQUD: {
VECTOR_COMPARE_OP(uint64_t, int64_t, false, ==)
break;
}
case VCMPGTSD: {
VECTOR_COMPARE_OP(int64_t, int64_t, false, >)
break;
}
case VCMPGTUD: {
VECTOR_COMPARE_OP(uint64_t, int64_t, false, >)
break;
}
case VCMPEQUW: {
VECTOR_COMPARE_OP(uint32_t, int32_t, false, ==)
break;
}
case VCMPGTSW: {
VECTOR_COMPARE_OP(int32_t, int32_t, false, >)
break;
}
case VCMPGTUW: {
VECTOR_COMPARE_OP(uint32_t, int32_t, false, >)
break;
}
case VCMPEQUH: {
VECTOR_COMPARE_OP(uint16_t, int16_t, false, ==)
break;
}
case VCMPGTSH: {
VECTOR_COMPARE_OP(int16_t, int16_t, false, >)
break;
}
case VCMPGTUH: {
VECTOR_COMPARE_OP(uint16_t, int16_t, false, >)
break;
}
case VCMPEQUB: {
VECTOR_COMPARE_OP(uint8_t, int8_t, false, ==)
break;
}
case VCMPGTSB: {
VECTOR_COMPARE_OP(int8_t, int8_t, false, >)
break;
}
case VCMPGTUB: {
VECTOR_COMPARE_OP(uint8_t, int8_t, false, >)
break;
}
#undef VECTOR_COMPARE_OP
case XVCVSPSXWS: {
VectorConverFromFPSaturate<float, int32_t>(this, instr, kMinInt, kMaxInt);
break;
}
case XVCVSPUXWS: {
VectorConverFromFPSaturate<float, uint32_t>(this, instr, 0, kMaxUInt32);
break;
}
case XVCVDPSXWS: {
VectorConverFromFPSaturate<double, int32_t>(this, instr, kMinInt, kMaxInt,
true);
break;
}
case XVCVDPUXWS: {
VectorConverFromFPSaturate<double, uint32_t>(this, instr, 0, kMaxUInt32,
true);
break;
}
case XVCVSXWSP: {
int t = instr->RTValue();
int b = instr->RBValue();
FOR_EACH_LANE(i, int32_t) {
int32_t b_val = get_simd_register_by_lane<int32_t>(b, i);
set_simd_register_by_lane<float>(t, i, static_cast<float>(b_val));
}
break;
}
case XVCVUXWSP: {
int t = instr->RTValue();
int b = instr->RBValue();
FOR_EACH_LANE(i, uint32_t) {
uint32_t b_val = get_simd_register_by_lane<uint32_t>(b, i);
set_simd_register_by_lane<float>(t, i, static_cast<float>(b_val));
}
break;
}
case XVCVSXDDP: {
int t = instr->RTValue();
int b = instr->RBValue();
FOR_EACH_LANE(i, int64_t) {
int64_t b_val = get_simd_register_by_lane<int64_t>(b, i);
set_simd_register_by_lane<double>(t, i, static_cast<double>(b_val));
}
break;
}
case XVCVUXDDP: {
int t = instr->RTValue();
int b = instr->RBValue();
FOR_EACH_LANE(i, uint64_t) {
uint64_t b_val = get_simd_register_by_lane<uint64_t>(b, i);
set_simd_register_by_lane<double>(t, i, static_cast<double>(b_val));
}
break;
}
case XVCVSPDP: {
int t = instr->RTValue();
int b = instr->RBValue();
FOR_EACH_LANE(i, double) {
float b_val = get_simd_register_by_lane<float>(b, 2 * i);
set_simd_register_by_lane<double>(t, i, static_cast<double>(b_val));
}
break;
}
case XVCVDPSP: {
int t = instr->RTValue();
int b = instr->RBValue();
FOR_EACH_LANE(i, double) {
double b_val = get_simd_register_by_lane<double>(b, i);
set_simd_register_by_lane<float>(t, 2 * i, static_cast<float>(b_val));
}
break;
}
case XSCVSPDPN: {
int t = instr->RTValue();
int b = instr->RBValue();
uint64_t double_bits = get_d_register(b);
// Value is at the high 32 bits of the register.
float f = base::bit_cast<float, uint32_t>(
static_cast<uint32_t>(double_bits >> 32));
double_bits = base::bit_cast<uint64_t, double>(static_cast<double>(f));
// Preserve snan.
if (is_snan(f)) {
double_bits &= 0xFFF7FFFFFFFFFFFFU; // Clear bit 51.
}
set_d_register(t, double_bits);
break;
}
case XSCVDPSPN: {
int t = instr->RTValue();
int b = instr->RBValue();
double b_val = get_double_from_d_register(b);
uint64_t float_bits = static_cast<uint64_t>(
base::bit_cast<uint32_t, float>(static_cast<float>(b_val)));
// Preserve snan.
if (is_snan(b_val)) {
float_bits &= 0xFFBFFFFFU; // Clear bit 22.
}
// fp result is placed in both 32bit halfs of the dst.
float_bits = (float_bits << 32) | float_bits;
set_d_register(t, float_bits);
break;
}
#define VECTOR_UNPACK(S, D, if_high_side) \
int t = instr->RTValue(); \
int b = instr->RBValue(); \
constexpr size_t kItemCount = kSimd128Size / sizeof(D); \
D temps[kItemCount] = {0}; \
/* Avoid overwriting src if src and dst are the same register. */ \
FOR_EACH_LANE(i, D) { \
temps[i] = get_simd_register_by_lane<S>(b, i, if_high_side); \
} \
FOR_EACH_LANE(i, D) { \
set_simd_register_by_lane<D>(t, i, temps[i], if_high_side); \
}
case VUPKHSB: {
VECTOR_UNPACK(int8_t, int16_t, true)
break;
}
case VUPKHSH: {
VECTOR_UNPACK(int16_t, int32_t, true)
break;
}
case VUPKHSW: {
VECTOR_UNPACK(int32_t, int64_t, true)
break;
}
case VUPKLSB: {
VECTOR_UNPACK(int8_t, int16_t, false)
break;
}
case VUPKLSH: {
VECTOR_UNPACK(int16_t, int32_t, false)
break;
}
case VUPKLSW: {
VECTOR_UNPACK(int32_t, int64_t, false)
break;
}
#undef VECTOR_UNPACK
case VPKSWSS: {
VectorPackSaturate<int32_t, int16_t>(this, instr, kMinInt16, kMaxInt16);
break;
}
case VPKSWUS: {
VectorPackSaturate<int32_t, uint16_t>(this, instr, 0, kMaxUInt16);
break;
}
case VPKSHSS: {
VectorPackSaturate<int16_t, int8_t>(this, instr, kMinInt8, kMaxInt8);
break;
}
case VPKSHUS: {
VectorPackSaturate<int16_t, uint8_t>(this, instr, 0, kMaxUInt8);
break;
}
#define VECTOR_ADD_SUB_SATURATE(intermediate_type, result_type, op, min_val, \
max_val) \
DECODE_VX_INSTRUCTION(t, a, b, T) \
FOR_EACH_LANE(i, result_type) { \
intermediate_type a_val = static_cast<intermediate_type>( \
get_simd_register_by_lane<result_type>(a, i)); \
intermediate_type b_val = static_cast<intermediate_type>( \
get_simd_register_by_lane<result_type>(b, i)); \
intermediate_type t_val = a_val op b_val; \
if (t_val > max_val) \
t_val = max_val; \
else if (t_val < min_val) \
t_val = min_val; \
set_simd_register_by_lane<result_type>(t, i, \
static_cast<result_type>(t_val)); \
}
case VADDSHS: {
VECTOR_ADD_SUB_SATURATE(int32_t, int16_t, +, kMinInt16, kMaxInt16)
break;
}
case VSUBSHS: {
VECTOR_ADD_SUB_SATURATE(int32_t, int16_t, -, kMinInt16, kMaxInt16)
break;
}
case VADDUHS: {
VECTOR_ADD_SUB_SATURATE(int32_t, uint16_t, +, 0, kMaxUInt16)
break;
}
case VSUBUHS: {
VECTOR_ADD_SUB_SATURATE(int32_t, uint16_t, -, 0, kMaxUInt16)
break;
}
case VADDSBS: {
VECTOR_ADD_SUB_SATURATE(int16_t, int8_t, +, kMinInt8, kMaxInt8)
break;
}
case VSUBSBS: {
VECTOR_ADD_SUB_SATURATE(int16_t, int8_t, -, kMinInt8, kMaxInt8)
break;
}
case VADDUBS: {
VECTOR_ADD_SUB_SATURATE(int16_t, uint8_t, +, 0, kMaxUInt8)
break;
}
case VSUBUBS: {
VECTOR_ADD_SUB_SATURATE(int16_t, uint8_t, -, 0, kMaxUInt8)
break;
}
#undef VECTOR_ADD_SUB_SATURATE
#define VECTOR_FP_ROUNDING(type, op) \
int t = instr->RTValue(); \
int b = instr->RBValue(); \
FOR_EACH_LANE(i, type) { \
type b_val = get_simd_register_by_lane<type>(b, i); \
set_simd_register_by_lane<type>(t, i, std::op(b_val)); \
}
case XVRDPIP: {
VECTOR_FP_ROUNDING(double, ceil)
break;
}
case XVRDPIM: {
VECTOR_FP_ROUNDING(double, floor)
break;
}
case XVRDPIZ: {
VECTOR_FP_ROUNDING(double, trunc)
break;
}
case XVRDPI: {
VECTOR_FP_ROUNDING(double, nearbyint)
break;
}
case XVRSPIP: {
VECTOR_FP_ROUNDING(float, ceilf)
break;
}
case XVRSPIM: {
VECTOR_FP_ROUNDING(float, floorf)
break;
}
case XVRSPIZ: {
VECTOR_FP_ROUNDING(float, truncf)
break;
}
case XVRSPI: {
VECTOR_FP_ROUNDING(float, nearbyintf)
break;
}
#undef VECTOR_FP_ROUNDING
case VSEL: {
int vrt = instr->RTValue();
int vra = instr->RAValue();
int vrb = instr->RBValue();
int vrc = instr->RCValue();
unsigned __int128 src_1 =
base::bit_cast<__int128>(get_simd_register(vra).int8);
unsigned __int128 src_2 =
base::bit_cast<__int128>(get_simd_register(vrb).int8);
unsigned __int128 src_3 =
base::bit_cast<__int128>(get_simd_register(vrc).int8);
unsigned __int128 tmp = (src_1 & ~src_3) | (src_2 & src_3);
simdr_t* result = base::bit_cast<simdr_t*>(&tmp);
set_simd_register(vrt, *result);
break;
}
case VPERM: {
int vrt = instr->RTValue();
int vra = instr->RAValue();
int vrb = instr->RBValue();
int vrc = instr->RCValue();
int8_t temp[kSimd128Size] = {0};
FOR_EACH_LANE(i, int8_t) {
int8_t lane_num = get_simd_register_by_lane<int8_t>(vrc, i);
// Get the five least significant bits.
lane_num = (lane_num << 3) >> 3;
int reg = vra;
if (lane_num >= kSimd128Size) {
lane_num = lane_num - kSimd128Size;
reg = vrb;
}
temp[i] = get_simd_register_by_lane<int8_t>(reg, lane_num);
}
FOR_EACH_LANE(i, int8_t) {
set_simd_register_by_lane<int8_t>(vrt, i, temp[i]);
}
break;
}
case VBPERMQ: {
DECODE_VX_INSTRUCTION(t, a, b, T)
uint16_t result_bits = 0;
unsigned __int128 src_bits =
base::bit_cast<__int128>(get_simd_register(a).int8);
for (int i = 0; i < kSimd128Size; i++) {
result_bits <<= 1;
uint8_t selected_bit_index = get_simd_register_by_lane<uint8_t>(b, i);
if (selected_bit_index < (kSimd128Size * kBitsPerByte)) {
unsigned __int128 bit_value = (src_bits << selected_bit_index) >>
(kSimd128Size * kBitsPerByte - 1);
result_bits |= bit_value;
}
}
set_simd_register_by_lane<uint64_t>(t, 0, 0);
set_simd_register_by_lane<uint64_t>(t, 1, 0);
set_simd_register_by_lane<uint16_t>(t, 3, result_bits);
break;
}
#define VECTOR_FP_QF(type, sign) \
DECODE_VX_INSTRUCTION(t, a, b, T) \
FOR_EACH_LANE(i, type) { \
type a_val = get_simd_register_by_lane<type>(a, i); \
type b_val = get_simd_register_by_lane<type>(b, i); \
type t_val = get_simd_register_by_lane<type>(t, i); \
type reuslt = sign * ((sign * b_val) + (a_val * t_val)); \
if (isinf(a_val)) reuslt = a_val; \
if (isinf(b_val)) reuslt = b_val; \
if (isinf(t_val)) reuslt = t_val; \
set_simd_register_by_lane<type>(t, i, reuslt); \
}
case XVMADDMDP: {
VECTOR_FP_QF(double, +1)
break;
}
case XVNMSUBMDP: {
VECTOR_FP_QF(double, -1)
break;
}
case XVMADDMSP: {
VECTOR_FP_QF(float, +1)
break;
}
case XVNMSUBMSP: {
VECTOR_FP_QF(float, -1)
break;
}
#undef VECTOR_FP_QF
case VMHRADDSHS: {
int vrt = instr->RTValue();
int vra = instr->RAValue();
int vrb = instr->RBValue();
int vrc = instr->RCValue();
FOR_EACH_LANE(i, int16_t) {
int16_t vra_val = get_simd_register_by_lane<int16_t>(vra, i);
int16_t vrb_val = get_simd_register_by_lane<int16_t>(vrb, i);
int16_t vrc_val = get_simd_register_by_lane<int16_t>(vrc, i);
int32_t temp = vra_val * vrb_val;
temp = (temp + 0x00004000) >> 15;
temp += vrc_val;
if (temp > kMaxInt16)
temp = kMaxInt16;
else if (temp < kMinInt16)
temp = kMinInt16;
set_simd_register_by_lane<int16_t>(vrt, i, static_cast<int16_t>(temp));
}
break;
}
case VMSUMMBM: {
int vrt = instr->RTValue();
int vra = instr->RAValue();
int vrb = instr->RBValue();
int vrc = instr->RCValue();
FOR_EACH_LANE(i, int32_t) {
int8_t vra_1_val = get_simd_register_by_lane<int8_t>(vra, 4 * i),
vra_2_val = get_simd_register_by_lane<int8_t>(vra, (4 * i) + 1),
vra_3_val = get_simd_register_by_lane<int8_t>(vra, (4 * i) + 2),
vra_4_val = get_simd_register_by_lane<int8_t>(vra, (4 * i) + 3);
uint8_t vrb_1_val = get_simd_register_by_lane<uint8_t>(vrb, 4 * i),
vrb_2_val =
get_simd_register_by_lane<uint8_t>(vrb, (4 * i) + 1),
vrb_3_val =
get_simd_register_by_lane<uint8_t>(vrb, (4 * i) + 2),
vrb_4_val =
get_simd_register_by_lane<uint8_t>(vrb, (4 * i) + 3);
int32_t vrc_val = get_simd_register_by_lane<int32_t>(vrc, i);
int32_t temp1 = vra_1_val * vrb_1_val, temp2 = vra_2_val * vrb_2_val,
temp3 = vra_3_val * vrb_3_val, temp4 = vra_4_val * vrb_4_val;
temp1 = temp1 + temp2 + temp3 + temp4 + vrc_val;
set_simd_register_by_lane<int32_t>(vrt, i, temp1);
}
break;
}
case VMSUMSHM: {
int vrt = instr->RTValue();
int vra = instr->RAValue();
int vrb = instr->RBValue();
int vrc = instr->RCValue();
FOR_EACH_LANE(i, int32_t) {
int16_t vra_1_val = get_simd_register_by_lane<int16_t>(vra, 2 * i);
int16_t vra_2_val =
get_simd_register_by_lane<int16_t>(vra, (2 * i) + 1);
int16_t vrb_1_val = get_simd_register_by_lane<int16_t>(vrb, 2 * i);
int16_t vrb_2_val =
get_simd_register_by_lane<int16_t>(vrb, (2 * i) + 1);
int32_t vrc_val = get_simd_register_by_lane<int32_t>(vrc, i);
int32_t temp1 = vra_1_val * vrb_1_val, temp2 = vra_2_val * vrb_2_val;
temp1 = temp1 + temp2 + vrc_val;
set_simd_register_by_lane<int32_t>(vrt, i, temp1);
}
break;
}
case VMLADDUHM: {
int vrt = instr->RTValue();
int vra = instr->RAValue();
int vrb = instr->RBValue();
int vrc = instr->RCValue();
FOR_EACH_LANE(i, uint16_t) {
uint16_t vra_val = get_simd_register_by_lane<uint16_t>(vra, i);
uint16_t vrb_val = get_simd_register_by_lane<uint16_t>(vrb, i);
uint16_t vrc_val = get_simd_register_by_lane<uint16_t>(vrc, i);
set_simd_register_by_lane<uint16_t>(vrt, i,
(vra_val * vrb_val) + vrc_val);
}
break;
}
#define VECTOR_UNARY_OP(type, op) \
int t = instr->RTValue(); \
int b = instr->RBValue(); \
FOR_EACH_LANE(i, type) { \
set_simd_register_by_lane<type>( \
t, i, op(get_simd_register_by_lane<type>(b, i))); \
}
case XVABSDP: {
VECTOR_UNARY_OP(double, std::abs)
break;
}
case XVNEGDP: {
VECTOR_UNARY_OP(double, -)
break;
}
case XVSQRTDP: {
VECTOR_UNARY_OP(double, std::sqrt)
break;
}
case XVABSSP: {
VECTOR_UNARY_OP(float, std::abs)
break;
}
case XVNEGSP: {
VECTOR_UNARY_OP(float, -)
break;
}
case XVSQRTSP: {
VECTOR_UNARY_OP(float, std::sqrt)
break;
}
case XVRESP: {
VECTOR_UNARY_OP(float, base::Recip)
break;
}
case XVRSQRTESP: {
VECTOR_UNARY_OP(float, base::RecipSqrt)
break;
}
case VNEGW: {
VECTOR_UNARY_OP(int32_t, -)
break;
}
case VNEGD: {
VECTOR_UNARY_OP(int64_t, -)
break;
}
#undef VECTOR_UNARY_OP
#define VECTOR_ROUNDING_AVERAGE(intermediate_type, result_type) \
DECODE_VX_INSTRUCTION(t, a, b, T) \
FOR_EACH_LANE(i, result_type) { \
intermediate_type a_val = static_cast<intermediate_type>( \
get_simd_register_by_lane<result_type>(a, i)); \
intermediate_type b_val = static_cast<intermediate_type>( \
get_simd_register_by_lane<result_type>(b, i)); \
intermediate_type t_val = ((a_val + b_val) + 1) >> 1; \
set_simd_register_by_lane<result_type>(t, i, \
static_cast<result_type>(t_val)); \
}
case VAVGUH: {
VECTOR_ROUNDING_AVERAGE(uint32_t, uint16_t)
break;
}
case VAVGUB: {
VECTOR_ROUNDING_AVERAGE(uint16_t, uint8_t)
break;
}
#undef VECTOR_ROUNDING_AVERAGE
case VPOPCNTB: {
int t = instr->RTValue();
int b = instr->RBValue();
FOR_EACH_LANE(i, uint8_t) {
set_simd_register_by_lane<uint8_t>(
t, i,
base::bits::CountPopulation(
get_simd_register_by_lane<uint8_t>(b, i)));
}
break;
}
#define EXTRACT_MASK(type) \
int rt = instr->RTValue(); \
int vrb = instr->RBValue(); \
uint64_t result = 0; \
FOR_EACH_LANE(i, type) { \
if (i > 0) result <<= 1; \
result |= std::signbit(get_simd_register_by_lane<type>(vrb, i)); \
} \
set_register(rt, result);
case VEXTRACTDM: {
EXTRACT_MASK(int64_t)
break;
}
case VEXTRACTWM: {
EXTRACT_MASK(int32_t)
break;
}
case VEXTRACTHM: {
EXTRACT_MASK(int16_t)
break;
}
case VEXTRACTBM: {
EXTRACT_MASK(int8_t)
break;
}
#undef EXTRACT_MASK
#undef FOR_EACH_LANE
#undef DECODE_VX_INSTRUCTION
#undef GET_ADDRESS
default: {
UNIMPLEMENTED();
}
}
}
void Simulator::Trace(Instruction* instr) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::base::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer, reinterpret_cast<uint8_t*>(instr));
PrintF("%05d %08" V8PRIxPTR " %s\n", icount_,
reinterpret_cast<intptr_t>(instr), buffer.begin());
}
// Executes the current instruction.
void Simulator::ExecuteInstruction(Instruction* instr) {
if (v8_flags.check_icache) {
CheckICache(i_cache(), instr);
}
pc_modified_ = false;
if (v8_flags.trace_sim) {
Trace(instr);
}
uint32_t opcode = instr->OpcodeField();
if (opcode == TWI) {
SoftwareInterrupt(instr);
} else {
ExecuteGeneric(instr);
}
if (!pc_modified_) {
set_pc(reinterpret_cast<intptr_t>(instr) + kInstrSize);
}
}
void Simulator::Execute() {
// Get the PC to simulate. Cannot use the accessor here as we need the
// raw PC value and not the one used as input to arithmetic instructions.
intptr_t program_counter = get_pc();
if (v8_flags.stop_sim_at == 0) {
// Fast version of the dispatch loop without checking whether the simulator
// should be stopping at a particular executed instruction.
while (program_counter != end_sim_pc) {
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
icount_++;
ExecuteInstruction(instr);
program_counter = get_pc();
}
} else {
// v8_flags.stop_sim_at is at the non-default value. Stop in the debugger
// when we reach the particular instruction count.
while (program_counter != end_sim_pc) {
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
icount_++;
if (icount_ == v8_flags.stop_sim_at) {
PPCDebugger dbg(this);
dbg.Debug();
} else {
ExecuteInstruction(instr);
}
program_counter = get_pc();
}
}
}
void Simulator::CallInternal(Address entry) {
// Adjust JS-based stack limit to C-based stack limit.
isolate_->stack_guard()->AdjustStackLimitForSimulator();
// Prepare to execute the code at entry
if (ABI_USES_FUNCTION_DESCRIPTORS) {
// entry is the function descriptor
set_pc(*(base::bit_cast<intptr_t*>(entry)));
} else {
// entry is the instruction address
set_pc(static_cast<intptr_t>(entry));
}
if (ABI_CALL_VIA_IP) {
// Put target address in ip (for JS prologue).
set_register(r12, get_pc());
}
// Put down marker for end of simulation. The simulator will stop simulation
// when the PC reaches this value. By saving the "end simulation" value into
// the LR the simulation stops when returning to this call point.
special_reg_lr_ = end_sim_pc;
// Remember the values of non-volatile registers.
intptr_t r2_val = get_register(r2);
intptr_t r13_val = get_register(r13);
intptr_t r14_val = get_register(r14);
intptr_t r15_val = get_register(r15);
intptr_t r16_val = get_register(r16);
intptr_t r17_val = get_register(r17);
intptr_t r18_val = get_register(r18);
intptr_t r19_val = get_register(r19);
intptr_t r20_val = get_register(r20);
intptr_t r21_val = get_register(r21);
intptr_t r22_val = get_register(r22);
intptr_t r23_val = get_register(r23);
intptr_t r24_val = get_register(r24);
intptr_t r25_val = get_register(r25);
intptr_t r26_val = get_register(r26);
intptr_t r27_val = get_register(r27);
intptr_t r28_val = get_register(r28);
intptr_t r29_val = get_register(r29);
intptr_t r30_val = get_register(r30);
intptr_t r31_val = get_register(fp);
// Set up the non-volatile registers with a known value. To be able to check
// that they are preserved properly across JS execution.
intptr_t callee_saved_value = icount_;
set_register(r2, callee_saved_value);
set_register(r13, callee_saved_value);
set_register(r14, callee_saved_value);
set_register(r15, callee_saved_value);
set_register(r16, callee_saved_value);
set_register(r17, callee_saved_value);
set_register(r18, callee_saved_value);
set_register(r19, callee_saved_value);
set_register(r20, callee_saved_value);
set_register(r21, callee_saved_value);
set_register(r22, callee_saved_value);
set_register(r23, callee_saved_value);
set_register(r24, callee_saved_value);
set_register(r25, callee_saved_value);
set_register(r26, callee_saved_value);
set_register(r27, callee_saved_value);
set_register(r28, callee_saved_value);
set_register(r29, callee_saved_value);
set_register(r30, callee_saved_value);
set_register(fp, callee_saved_value);
// Start the simulation
Execute();
// Check that the non-volatile registers have been preserved.
if (ABI_TOC_REGISTER != 2) {
CHECK_EQ(callee_saved_value, get_register(r2));
}
if (ABI_TOC_REGISTER != 13) {
CHECK_EQ(callee_saved_value, get_register(r13));
}
CHECK_EQ(callee_saved_value, get_register(r14));
CHECK_EQ(callee_saved_value, get_register(r15));
CHECK_EQ(callee_saved_value, get_register(r16));
CHECK_EQ(callee_saved_value, get_register(r17));
CHECK_EQ(callee_saved_value, get_register(r18));
CHECK_EQ(callee_saved_value, get_register(r19));
CHECK_EQ(callee_saved_value, get_register(r20));
CHECK_EQ(callee_saved_value, get_register(r21));
CHECK_EQ(callee_saved_value, get_register(r22));
CHECK_EQ(callee_saved_value, get_register(r23));
CHECK_EQ(callee_saved_value, get_register(r24));
CHECK_EQ(callee_saved_value, get_register(r25));
CHECK_EQ(callee_saved_value, get_register(r26));
CHECK_EQ(callee_saved_value, get_register(r27));
CHECK_EQ(callee_saved_value, get_register(r28));
CHECK_EQ(callee_saved_value, get_register(r29));
CHECK_EQ(callee_saved_value, get_register(r30));
CHECK_EQ(callee_saved_value, get_register(fp));
// Restore non-volatile registers with the original value.
set_register(r2, r2_val);
set_register(r13, r13_val);
set_register(r14, r14_val);
set_register(r15, r15_val);
set_register(r16, r16_val);
set_register(r17, r17_val);
set_register(r18, r18_val);
set_register(r19, r19_val);
set_register(r20, r20_val);
set_register(r21, r21_val);
set_register(r22, r22_val);
set_register(r23, r23_val);
set_register(r24, r24_val);
set_register(r25, r25_val);
set_register(r26, r26_val);
set_register(r27, r27_val);
set_register(r28, r28_val);
set_register(r29, r29_val);
set_register(r30, r30_val);
set_register(fp, r31_val);
}
intptr_t Simulator::CallImpl(Address entry, int argument_count,
const intptr_t* arguments) {
// Set up arguments
// First eight arguments passed in registers r3-r10.
int reg_arg_count = std::min(8, argument_count);
int stack_arg_count = argument_count - reg_arg_count;
for (int i = 0; i < reg_arg_count; i++) {
set_register(i + 3, arguments[i]);
}
// Remaining arguments passed on stack.
intptr_t original_stack = get_register(sp);
// Compute position of stack on entry to generated code.
intptr_t entry_stack =
(original_stack -
(kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t));
if (base::OS::ActivationFrameAlignment() != 0) {
entry_stack &= -base::OS::ActivationFrameAlignment();
}
// Store remaining arguments on stack, from low to high memory.
// +2 is a hack for the LR slot + old SP on PPC
intptr_t* stack_argument =
reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot;
memcpy(stack_argument, arguments + reg_arg_count,
stack_arg_count * sizeof(*arguments));
set_register(sp, entry_stack);
CallInternal(entry);
// Pop stack passed arguments.
CHECK_EQ(entry_stack, get_register(sp));
set_register(sp, original_stack);
return get_register(r3);
}
void Simulator::CallFP(Address entry, double d0, double d1) {
set_d_register_from_double(1, d0);
set_d_register_from_double(2, d1);
CallInternal(entry);
}
int32_t Simulator::CallFPReturnsInt(Address entry, double d0, double d1) {
CallFP(entry, d0, d1);
int32_t result = get_register(r3);
return result;
}
double Simulator::CallFPReturnsDouble(Address entry, double d0, double d1) {
CallFP(entry, d0, d1);
return get_double_from_d_register(1);
}
uintptr_t Simulator::PushAddress(uintptr_t address) {
uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
*stack_slot = address;
set_register(sp, new_sp);
return new_sp;
}
uintptr_t Simulator::PopAddress() {
uintptr_t current_sp = get_register(sp);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
uintptr_t address = *stack_slot;
set_register(sp, current_sp + sizeof(uintptr_t));
return address;
}
void Simulator::GlobalMonitor::Clear() {
access_state_ = MonitorAccess::Open;
tagged_addr_ = 0;
size_ = TransactionSize::None;
thread_id_ = ThreadId::Invalid();
}
void Simulator::GlobalMonitor::NotifyLoadExcl(uintptr_t addr,
TransactionSize size,
ThreadId thread_id) {
// TODO(s390): By using Global Monitors, we are effectively limiting one
// active reservation across all processors. This would potentially serialize
// parallel threads executing load&reserve + store conditional on unrelated
// memory. Technically, this implementation would still make the simulator
// adhere to the spec, but seems overly heavy-handed.
access_state_ = MonitorAccess::Exclusive;
tagged_addr_ = addr;
size_ = size;
thread_id_ = thread_id;
}
void Simulator::GlobalMonitor::NotifyStore(uintptr_t addr, TransactionSize size,
ThreadId thread_id) {
if (access_state_ == MonitorAccess::Exclusive) {
// Calculate if the transaction has been overlapped
uintptr_t transaction_start = addr;
uintptr_t transaction_end = addr + static_cast<uintptr_t>(size);
uintptr_t exclusive_transaction_start = tagged_addr_;
uintptr_t exclusive_transaction_end =
tagged_addr_ + static_cast<uintptr_t>(size_);
bool is_not_overlapped = transaction_end < exclusive_transaction_start ||
exclusive_transaction_end < transaction_start;
if (!is_not_overlapped && thread_id_ != thread_id) {
Clear();
}
}
}
bool Simulator::GlobalMonitor::NotifyStoreExcl(uintptr_t addr,
TransactionSize size,
ThreadId thread_id) {
bool permission = access_state_ == MonitorAccess::Exclusive &&
addr == tagged_addr_ && size_ == size &&
thread_id_ == thread_id;
// The reservation is cleared if the processor holding the reservation
// executes a store conditional instruction to any address.
Clear();
return permission;
}
} // namespace internal
} // namespace v8
#undef SScanF
#endif // USE_SIMULATOR