%PDF- %PDF-
| Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/builtins/ia32/ |
| Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/builtins/ia32/builtins-ia32.cc |
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_IA32
#include "src/api/api-arguments.h"
#include "src/base/bits-iterator.h"
#include "src/base/iterator.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/interface-descriptors-inl.h"
// For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
#include "src/codegen/macro-assembler-inl.h"
#include "src/codegen/register-configuration.h"
#include "src/debug/debug.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/frame-constants.h"
#include "src/execution/frames.h"
#include "src/heap/heap-inl.h"
#include "src/logging/counters.h"
#include "src/objects/cell.h"
#include "src/objects/foreign.h"
#include "src/objects/heap-number.h"
#include "src/objects/js-generator.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"
#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/baseline/liftoff-assembler-defs.h"
#include "src/wasm/wasm-linkage.h"
#include "src/wasm/wasm-objects.h"
#endif // V8_ENABLE_WEBASSEMBLY
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
__ Move(kJavaScriptCallExtraArg1Register,
Immediate(ExternalReference::Create(address)));
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
RelocInfo::CODE_TARGET);
}
namespace {
constexpr int kReceiverOnStackSize = kSystemPointerSize;
enum class ArgumentsElementType {
kRaw, // Push arguments as they are.
kHandle // Dereference arguments before pushing.
};
void Generate_PushArguments(MacroAssembler* masm, Register array, Register argc,
Register scratch1, Register scratch2,
ArgumentsElementType element_type) {
DCHECK(!AreAliased(array, argc, scratch1, scratch2));
Register counter = scratch1;
Label loop, entry;
__ lea(counter, Operand(argc, -kJSArgcReceiverSlots));
__ jmp(&entry);
__ bind(&loop);
Operand value(array, counter, times_system_pointer_size, 0);
if (element_type == ArgumentsElementType::kHandle) {
DCHECK(scratch2 != no_reg);
__ mov(scratch2, value);
value = Operand(scratch2, 0);
}
__ Push(value);
__ bind(&entry);
__ dec(counter);
__ j(greater_equal, &loop, Label::kNear);
}
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax: number of arguments
// -- edi: constructor function
// -- edx: new target
// -- esi: context
// -----------------------------------
Label stack_overflow;
__ StackOverflowCheck(eax, ecx, &stack_overflow);
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(eax);
__ push(esi);
__ push(eax);
__ SmiUntag(eax);
// TODO(victorgomes): When the arguments adaptor is completely removed, we
// should get the formal parameter count and copy the arguments in its
// correct position (including any undefined), instead of delaying this to
// InvokeFunction.
// Set up pointer to first argument (skip receiver).
__ lea(esi, Operand(ebp, StandardFrameConstants::kFixedFrameSizeAboveFp +
kSystemPointerSize));
// Copy arguments to the expression stack.
// esi: Pointer to start of arguments.
// eax: Number of arguments.
Generate_PushArguments(masm, esi, eax, ecx, no_reg,
ArgumentsElementType::kRaw);
// The receiver for the builtin/api call.
__ PushRoot(RootIndex::kTheHoleValue);
// Call the function.
// eax: number of arguments (untagged)
// edi: constructor function
// edx: new target
// Reload context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
__ InvokeFunction(edi, edx, eax, InvokeType::kCall);
// Restore context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame.
__ mov(edx, Operand(ebp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ DropArguments(edx, ecx, MacroAssembler::kCountIsSmi,
MacroAssembler::kCountIncludesReceiver);
__ ret(0);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3(); // This should be unreachable.
}
}
} // namespace
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax: number of arguments (untagged)
// -- edi: constructor function
// -- edx: new target
// -- esi: context
// -- sp[...]: constructor arguments
// -----------------------------------
FrameScope scope(masm, StackFrame::MANUAL);
// Enter a construct frame.
__ EnterFrame(StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
// Preserve the incoming parameters on the stack.
__ mov(ecx, eax);
__ SmiTag(ecx);
__ Push(esi);
__ Push(ecx);
__ Push(edi);
__ PushRoot(RootIndex::kTheHoleValue);
__ Push(edx);
// ----------- S t a t e -------------
// -- sp[0*kSystemPointerSize]: new target
// -- sp[1*kSystemPointerSize]: padding
// -- edi and sp[2*kSystemPointerSize]: constructor function
// -- sp[3*kSystemPointerSize]: argument count
// -- sp[4*kSystemPointerSize]: context
// -----------------------------------
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(eax, FieldOperand(eax, SharedFunctionInfo::kFlagsOffset));
__ DecodeField<SharedFunctionInfo::FunctionKindBits>(eax);
__ JumpIfIsInRange(
eax, static_cast<uint32_t>(FunctionKind::kDefaultDerivedConstructor),
static_cast<uint32_t>(FunctionKind::kDerivedConstructor), ecx,
¬_create_implicit_receiver, Label::kNear);
// If not derived class constructor: Allocate the new receiver object.
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET);
__ jmp(&post_instantiation_deopt_entry, Label::kNear);
// Else: use TheHoleValue as receiver for constructor call
__ bind(¬_create_implicit_receiver);
__ LoadRoot(eax, RootIndex::kTheHoleValue);
// ----------- S t a t e -------------
// -- eax: implicit receiver
// -- Slot 4 / sp[0*kSystemPointerSize]: new target
// -- Slot 3 / sp[1*kSystemPointerSize]: padding
// -- Slot 2 / sp[2*kSystemPointerSize]: constructor function
// -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged)
// -- Slot 0 / sp[4*kSystemPointerSize]: context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ bind(&post_instantiation_deopt_entry);
// Restore new target.
__ Pop(edx);
// Push the allocated receiver to the stack.
__ Push(eax);
// We need two copies because we may have to return the original one
// and the calling conventions dictate that the called function pops the
// receiver. The second copy is pushed after the arguments, we saved in r8
// since rax needs to store the number of arguments before
// InvokingFunction.
__ movd(xmm0, eax);
// Set up pointer to first argument (skip receiver).
__ lea(edi, Operand(ebp, StandardFrameConstants::kFixedFrameSizeAboveFp +
kSystemPointerSize));
// Restore argument count.
__ mov(eax, Operand(ebp, ConstructFrameConstants::kLengthOffset));
__ SmiUntag(eax);
// Check if we have enough stack space to push all arguments.
// Argument count in eax. Clobbers ecx.
Label stack_overflow;
__ StackOverflowCheck(eax, ecx, &stack_overflow);
// TODO(victorgomes): When the arguments adaptor is completely removed, we
// should get the formal parameter count and copy the arguments in its
// correct position (including any undefined), instead of delaying this to
// InvokeFunction.
// Copy arguments to the expression stack.
// edi: Pointer to start of arguments.
// eax: Number of arguments.
Generate_PushArguments(masm, edi, eax, ecx, no_reg,
ArgumentsElementType::kRaw);
// Push implicit receiver.
__ movd(ecx, xmm0);
__ Push(ecx);
// Restore and and call the constructor function.
__ mov(edi, Operand(ebp, ConstructFrameConstants::kConstructorOffset));
__ InvokeFunction(edi, edx, eax, InvokeType::kCall);
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label check_result, use_receiver, do_throw, leave_and_return;
// If the result is undefined, we jump out to using the implicit receiver.
__ JumpIfNotRoot(eax, RootIndex::kUndefinedValue, &check_result,
Label::kNear);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ mov(eax, Operand(esp, 0 * kSystemPointerSize));
__ JumpIfRoot(eax, RootIndex::kTheHoleValue, &do_throw);
__ bind(&leave_and_return);
// Restore smi-tagged arguments count from the frame.
__ mov(edx, Operand(ebp, ConstructFrameConstants::kLengthOffset));
__ LeaveFrame(StackFrame::CONSTRUCT);
// Remove caller arguments from the stack and return.
__ DropArguments(edx, ecx, MacroAssembler::kCountIsSmi,
MacroAssembler::kCountIncludesReceiver);
__ ret(0);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
__ bind(&check_result);
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(eax, &use_receiver, Label::kNear);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
static_assert(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
__ j(above_equal, &leave_and_return, Label::kNear);
__ jmp(&use_receiver, Label::kNear);
__ bind(&do_throw);
// Restore context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// This should be unreachable.
__ int3();
__ bind(&stack_overflow);
// Restore context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(edi);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
namespace {
// Called with the native C calling convention. The corresponding function
// signature is either:
//
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, Address new_target, Address target,
// Address receiver, intptr_t argc, Address** argv)>;
// or
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, MicrotaskQueue* microtask_queue)>;
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
Builtin entry_trampoline) {
Label invoke, handler_entry, exit;
Label not_outermost_js, not_outermost_js_2;
{
NoRootArrayScope uninitialized_root_register(masm);
// Set up frame.
__ push(ebp);
__ mov(ebp, esp);
// Push marker in two places.
__ push(Immediate(StackFrame::TypeToMarker(type)));
// Reserve a slot for the context. It is filled after the root register has
// been set up.
__ AllocateStackSpace(kSystemPointerSize);
// Save callee-saved registers (C calling conventions).
__ push(edi);
__ push(esi);
__ push(ebx);
// Initialize the root register based on the given Isolate* argument.
// C calling convention. The first argument is passed on the stack.
__ mov(kRootRegister,
Operand(ebp, EntryFrameConstants::kRootRegisterValueOffset));
}
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp = ExternalReference::Create(
IsolateAddressId::kCEntryFPAddress, masm->isolate());
__ push(__ ExternalReferenceAsOperand(c_entry_fp, edi));
// Clear c_entry_fp, now we've pushed its previous value to the stack.
// If the c_entry_fp is not already zero and we don't clear it, the
// StackFrameIteratorForProfiler will assume we are executing C++ and miss the
// JS frames on top.
__ mov(__ ExternalReferenceAsOperand(c_entry_fp, edi), Immediate(0));
// Store the context address in the previously-reserved slot.
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ mov(edi, __ ExternalReferenceAsOperand(context_address, edi));
static constexpr int kOffsetToContextSlot = -2 * kSystemPointerSize;
__ mov(Operand(ebp, kOffsetToContextSlot), edi);
// If this is the outermost JS call, set js_entry_sp value.
ExternalReference js_entry_sp = ExternalReference::Create(
IsolateAddressId::kJSEntrySPAddress, masm->isolate());
__ cmp(__ ExternalReferenceAsOperand(js_entry_sp, edi), Immediate(0));
__ j(not_equal, ¬_outermost_js, Label::kNear);
__ mov(__ ExternalReferenceAsOperand(js_entry_sp, edi), ebp);
__ push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ jmp(&invoke, Label::kNear);
__ bind(¬_outermost_js);
__ push(Immediate(StackFrame::INNER_JSENTRY_FRAME));
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
// Store the current pc as the handler offset. It's used later to create the
// handler table.
masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception = ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, masm->isolate());
__ mov(__ ExternalReferenceAsOperand(pending_exception, edi), eax);
__ Move(eax, masm->isolate()->factory()->exception());
__ jmp(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushStackHandler(edi);
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return.
Handle<Code> trampoline_code =
masm->isolate()->builtins()->code_handle(entry_trampoline);
__ Call(trampoline_code, RelocInfo::CODE_TARGET);
// Unlink this frame from the handler chain.
__ PopStackHandler(edi);
__ bind(&exit);
// Check if the current stack frame is marked as the outermost JS frame.
__ pop(edi);
__ cmp(edi, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ j(not_equal, ¬_outermost_js_2);
__ mov(__ ExternalReferenceAsOperand(js_entry_sp, edi), Immediate(0));
__ bind(¬_outermost_js_2);
// Restore the top frame descriptor from the stack.
__ pop(__ ExternalReferenceAsOperand(c_entry_fp, edi));
// Restore callee-saved registers (C calling conventions).
__ pop(ebx);
__ pop(esi);
__ pop(edi);
__ add(esp, Immediate(2 * kSystemPointerSize)); // remove markers
// Restore frame pointer and return.
__ pop(ebp);
__ ret(0);
}
} // namespace
void Builtins::Generate_JSEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtin::kJSEntryTrampoline);
}
void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
Builtin::kJSConstructEntryTrampoline);
}
void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY,
Builtin::kRunMicrotasksTrampoline);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
const Register scratch1 = edx;
const Register scratch2 = edi;
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ mov(esi, __ ExternalReferenceAsOperand(context_address, scratch1));
// Load the previous frame pointer (edx) to access C arguments
__ mov(scratch1, Operand(ebp, 0));
// Push the function.
__ push(Operand(scratch1, EntryFrameConstants::kFunctionArgOffset));
// Load the number of arguments and setup pointer to the arguments.
__ mov(eax, Operand(scratch1, EntryFrameConstants::kArgcOffset));
__ mov(scratch1, Operand(scratch1, EntryFrameConstants::kArgvOffset));
// Check if we have enough stack space to push all arguments.
// Argument count in eax. Clobbers ecx.
Label enough_stack_space, stack_overflow;
__ StackOverflowCheck(eax, ecx, &stack_overflow);
__ jmp(&enough_stack_space);
__ bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
__ bind(&enough_stack_space);
// Copy arguments to the stack.
// scratch1 (edx): Pointer to start of arguments.
// eax: Number of arguments.
Generate_PushArguments(masm, scratch1, eax, ecx, scratch2,
ArgumentsElementType::kHandle);
// Load the previous frame pointer to access C arguments
__ mov(scratch2, Operand(ebp, 0));
// Push the receiver onto the stack.
__ push(Operand(scratch2, EntryFrameConstants::kReceiverArgOffset));
// Get the new.target and function from the frame.
__ mov(edx, Operand(scratch2, EntryFrameConstants::kNewTargetArgOffset));
__ mov(edi, Operand(scratch2, EntryFrameConstants::kFunctionArgOffset));
// Invoke the code.
Handle<Code> builtin = is_construct
? BUILTIN_CODE(masm->isolate(), Construct)
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the internal frame. Notice that this also removes the empty.
// context and the function left on the stack by the code
// invocation.
}
__ ret(0);
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
// This expects two C++ function parameters passed by Invoke() in
// execution.cc.
// r1: microtask_queue
__ mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(),
Operand(ebp, EntryFrameConstants::kMicrotaskQueueArgOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
}
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
Register sfi_data,
Register scratch1) {
Label done;
__ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1);
__ j(not_equal, &done, Label::kNear);
__ mov(sfi_data,
FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
__ bind(&done);
}
static void AssertCodeIsBaseline(MacroAssembler* masm, Register code,
Register scratch) {
DCHECK(!AreAliased(code, scratch));
// Verify that the code kind is baseline code via the CodeKind.
__ mov(scratch, FieldOperand(code, Code::kFlagsOffset));
__ DecodeField<Code::KindField>(scratch);
__ cmp(scratch, Immediate(static_cast<int>(CodeKind::BASELINE)));
__ Assert(equal, AbortReason::kExpectedBaselineData);
}
static void GetSharedFunctionInfoBytecodeOrBaseline(MacroAssembler* masm,
Register sfi_data,
Register scratch1,
Label* is_baseline) {
ASM_CODE_COMMENT(masm);
Label done;
__ LoadMap(scratch1, sfi_data);
#ifndef V8_JITLESS
__ CmpInstanceType(scratch1, CODE_TYPE);
if (v8_flags.debug_code) {
Label not_baseline;
__ j(not_equal, ¬_baseline);
AssertCodeIsBaseline(masm, sfi_data, scratch1);
__ j(equal, is_baseline);
__ bind(¬_baseline);
} else {
__ j(equal, is_baseline);
}
#endif // !V8_JITLESS
__ CmpInstanceType(scratch1, INTERPRETER_DATA_TYPE);
__ j(not_equal, &done, Label::kNear);
__ mov(sfi_data,
FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
__ bind(&done);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the value to pass to the generator
// -- edx : the JSGeneratorObject to resume
// -- esp[0] : return address
// -----------------------------------
// Store input value into generator object.
__ mov(FieldOperand(edx, JSGeneratorObject::kInputOrDebugPosOffset), eax);
Register object = WriteBarrierDescriptor::ObjectRegister();
__ mov(object, edx);
__ RecordWriteField(object, JSGeneratorObject::kInputOrDebugPosOffset, eax,
WriteBarrierDescriptor::SlotAddressRegister(),
SaveFPRegsMode::kIgnore);
// Check that edx is still valid, RecordWrite might have clobbered it.
__ AssertGeneratorObject(edx);
// Load suspended function and context.
__ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ cmpb(__ ExternalReferenceAsOperand(debug_hook, ecx), Immediate(0));
__ j(not_equal, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ cmp(edx, __ ExternalReferenceAsOperand(debug_suspended_generator, ecx));
__ j(equal, &prepare_step_in_suspended_generator);
__ bind(&stepping_prepared);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ CompareStackLimit(esp, StackLimitKind::kRealStackLimit);
__ j(below, &stack_overflow);
// Pop return address.
__ PopReturnAddressTo(eax);
// ----------- S t a t e -------------
// -- eax : return address
// -- edx : the JSGeneratorObject to resume
// -- edi : generator function
// -- esi : generator context
// -----------------------------------
{
__ movd(xmm0, ebx);
// Copy the function arguments from the generator object's register file.
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ movzx_w(ecx, FieldOperand(
ecx, SharedFunctionInfo::kFormalParameterCountOffset));
__ dec(ecx); // Exclude receiver.
__ mov(ebx,
FieldOperand(edx, JSGeneratorObject::kParametersAndRegistersOffset));
{
Label done_loop, loop;
__ bind(&loop);
__ dec(ecx);
__ j(less, &done_loop);
__ Push(
FieldOperand(ebx, ecx, times_tagged_size, FixedArray::kHeaderSize));
__ jmp(&loop);
__ bind(&done_loop);
}
// Push receiver.
__ Push(FieldOperand(edx, JSGeneratorObject::kReceiverOffset));
// Restore registers.
__ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
__ movd(ebx, xmm0);
}
// Underlying function needs to have bytecode available.
if (v8_flags.debug_code) {
Label is_baseline, ok;
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset));
__ Push(eax);
GetSharedFunctionInfoBytecodeOrBaseline(masm, ecx, eax, &is_baseline);
__ Pop(eax);
__ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, ecx);
__ Assert(equal, AbortReason::kMissingBytecodeArray);
__ jmp(&ok);
__ bind(&is_baseline);
__ Pop(eax);
__ CmpObjectType(ecx, CODE_TYPE, ecx);
__ Assert(equal, AbortReason::kMissingBytecodeArray);
__ bind(&ok);
}
// Resume (Ignition/TurboFan) generator object.
{
__ PushReturnAddressFrom(eax);
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ movzx_w(eax, FieldOperand(
eax, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ JumpJSFunction(edi);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(edx);
__ Push(edi);
// Push hole as receiver since we do not use it for stepping.
__ PushRoot(RootIndex::kTheHoleValue);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(edx);
__ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
__ bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(edx);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(edx);
__ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3(); // This should be unreachable.
}
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
Register scratch2) {
ASM_CODE_COMMENT(masm);
Register params_size = scratch1;
// Get the size of the formal parameters (in bytes).
__ mov(params_size,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(params_size,
FieldOperand(params_size, BytecodeArray::kParameterSizeOffset));
Register actual_params_size = scratch2;
// Compute the size of the actual parameters (in bytes).
__ mov(actual_params_size, Operand(ebp, StandardFrameConstants::kArgCOffset));
__ lea(actual_params_size,
Operand(actual_params_size, times_system_pointer_size, 0));
// If actual is bigger than formal, then we should use it to free up the stack
// arguments.
Label corrected_args_count;
__ cmp(params_size, actual_params_size);
__ j(greater_equal, &corrected_args_count, Label::kNear);
__ mov(params_size, actual_params_size);
__ bind(&corrected_args_count);
// Leave the frame (also dropping the register file).
__ leave();
// Drop receiver + arguments.
__ DropArguments(params_size, scratch2, MacroAssembler::kCountIsBytes,
MacroAssembler::kCountIncludesReceiver);
}
// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode. Will not advance
// the bytecode offset if the current bytecode is a JumpLoop, instead just
// re-executing the JumpLoop to jump to the correct bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
Register bytecode_array,
Register bytecode_offset,
Register scratch1, Register scratch2,
Register scratch3, Label* if_return) {
ASM_CODE_COMMENT(masm);
Register bytecode_size_table = scratch1;
Register bytecode = scratch2;
// The bytecode offset value will be increased by one in wide and extra wide
// cases. In the case of having a wide or extra wide JumpLoop bytecode, we
// will restore the original bytecode. In order to simplify the code, we have
// a backup of it.
Register original_bytecode_offset = scratch3;
DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
bytecode, original_bytecode_offset));
__ Move(bytecode_size_table,
Immediate(ExternalReference::bytecode_size_table_address()));
// Load the current bytecode.
__ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
__ Move(original_bytecode_offset, bytecode_offset);
// Check if the bytecode is a Wide or ExtraWide prefix bytecode.
Label process_bytecode, extra_wide;
static_assert(0 == static_cast<int>(interpreter::Bytecode::kWide));
static_assert(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
static_assert(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
static_assert(3 ==
static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
__ cmp(bytecode, Immediate(0x3));
__ j(above, &process_bytecode, Label::kNear);
// The code to load the next bytecode is common to both wide and extra wide.
// We can hoist them up here. inc has to happen before test since it
// modifies the ZF flag.
__ inc(bytecode_offset);
__ test(bytecode, Immediate(0x1));
__ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
__ j(not_equal, &extra_wide, Label::kNear);
// Load the next bytecode and update table to the wide scaled table.
__ add(bytecode_size_table,
Immediate(kByteSize * interpreter::Bytecodes::kBytecodeCount));
__ jmp(&process_bytecode, Label::kNear);
__ bind(&extra_wide);
// Update table to the extra wide scaled table.
__ add(bytecode_size_table,
Immediate(2 * kByteSize * interpreter::Bytecodes::kBytecodeCount));
__ bind(&process_bytecode);
// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME) \
__ cmp(bytecode, \
Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \
__ j(equal, if_return);
RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL
// If this is a JumpLoop, re-execute it to perform the jump to the beginning
// of the loop.
Label end, not_jump_loop;
__ cmp(bytecode,
Immediate(static_cast<int>(interpreter::Bytecode::kJumpLoop)));
__ j(not_equal, ¬_jump_loop, Label::kNear);
// If this is a wide or extra wide JumpLoop, we need to restore the original
// bytecode_offset since we might have increased it to skip the wide /
// extra-wide prefix bytecode.
__ Move(bytecode_offset, original_bytecode_offset);
__ jmp(&end, Label::kNear);
__ bind(¬_jump_loop);
// Otherwise, load the size of the current bytecode and advance the offset.
__ movzx_b(bytecode_size_table,
Operand(bytecode_size_table, bytecode, times_1, 0));
__ add(bytecode_offset, bytecode_size_table);
__ bind(&end);
}
namespace {
void ResetSharedFunctionInfoAge(MacroAssembler* masm, Register sfi) {
__ mov_w(FieldOperand(sfi, SharedFunctionInfo::kAgeOffset), Immediate(0));
}
void ResetJSFunctionAge(MacroAssembler* masm, Register js_function,
Register scratch) {
const Register shared_function_info(scratch);
__ Move(shared_function_info,
FieldOperand(js_function, JSFunction::kSharedFunctionInfoOffset));
ResetSharedFunctionInfoAge(masm, shared_function_info);
}
void ResetFeedbackVectorOsrUrgency(MacroAssembler* masm,
Register feedback_vector, Register scratch) {
__ mov_b(scratch,
FieldOperand(feedback_vector, FeedbackVector::kOsrStateOffset));
__ and_(scratch, Immediate(~FeedbackVector::OsrUrgencyBits::kMask));
__ mov_b(FieldOperand(feedback_vector, FeedbackVector::kOsrStateOffset),
scratch);
}
} // namespace
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right.
//
// The live registers are:
// o eax: actual argument count
// o edi: the JS function object being called
// o edx: the incoming new target or generator object
// o esi: our context
// o ebp: the caller's frame pointer
// o esp: stack pointer (pointing to return address)
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frame-constants.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(
MacroAssembler* masm, InterpreterEntryTrampolineMode mode) {
__ movd(xmm0, eax); // Spill actual argument count.
// The bytecode array could have been flushed from the shared function info,
// if so, call into CompileLazy.
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset));
Label is_baseline;
GetSharedFunctionInfoBytecodeOrBaseline(masm, ecx, eax, &is_baseline);
Label compile_lazy;
__ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, eax);
__ j(not_equal, &compile_lazy);
Label push_stack_frame;
Register feedback_vector = ecx;
Register closure = edi;
Register scratch = eax;
__ LoadFeedbackVector(feedback_vector, closure, scratch, &push_stack_frame,
Label::kNear);
#ifndef V8_JITLESS
// If feedback vector is valid, check for optimized code and update invocation
// count. Load the optimization state from the feedback vector and re-use the
// register.
Label flags_need_processing;
Register flags = ecx;
XMMRegister saved_feedback_vector = xmm1;
__ LoadFeedbackVectorFlagsAndJumpIfNeedsProcessing(
flags, saved_feedback_vector, CodeKind::INTERPRETED_FUNCTION,
&flags_need_processing);
// Reload the feedback vector.
__ movd(feedback_vector, saved_feedback_vector);
ResetFeedbackVectorOsrUrgency(masm, feedback_vector, scratch);
// Increment the invocation count.
__ inc(FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset));
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set
// up the frame (that is done below).
#else
// Note: By omitting the above code in jitless mode we also disable:
// - kFlagsLogNextExecution: only used for logging/profiling; and
// - kInvocationCountOffset: only used for tiering heuristics and code
// coverage.
#endif // !V8_JITLESS
__ bind(&push_stack_frame);
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ push(ebp); // Caller's frame pointer.
__ mov(ebp, esp);
__ push(kContextRegister); // Callee's context.
__ push(kJavaScriptCallTargetRegister); // Callee's JS function.
__ movd(kJavaScriptCallArgCountRegister, xmm0);
__ push(kJavaScriptCallArgCountRegister); // Actual argument count.
// Get the bytecode array from the function object and load it into
// kInterpreterBytecodeArrayRegister.
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
ResetSharedFunctionInfoAge(masm, eax);
__ mov(kInterpreterBytecodeArrayRegister,
FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, eax);
// Check function data field is actually a BytecodeArray object.
if (v8_flags.debug_code) {
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
eax);
__ Assert(
equal,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Push bytecode array.
__ push(kInterpreterBytecodeArrayRegister);
// Push Smi tagged initial bytecode array offset.
__ push(Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag)));
__ push(feedback_vector);
// Allocate the local and temporary register file on the stack.
Label stack_overflow;
{
// Load frame size from the BytecodeArray object.
Register frame_size = ecx;
__ mov(frame_size, FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
__ mov(eax, esp);
__ sub(eax, frame_size);
__ CompareStackLimit(eax, StackLimitKind::kRealStackLimit);
__ j(below, &stack_overflow);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ jmp(&loop_check);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ push(kInterpreterAccumulatorRegister);
// Continue loop if not done.
__ bind(&loop_check);
__ sub(frame_size, Immediate(kSystemPointerSize));
__ j(greater_equal, &loop_header);
}
// If the bytecode array has a valid incoming new target or generator object
// register, initialize it with incoming value which was passed in edx.
Label no_incoming_new_target_or_generator_register;
__ mov(ecx, FieldOperand(
kInterpreterBytecodeArrayRegister,
BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
__ test(ecx, ecx);
__ j(zero, &no_incoming_new_target_or_generator_register);
__ mov(Operand(ebp, ecx, times_system_pointer_size, 0), edx);
__ bind(&no_incoming_new_target_or_generator_register);
// Perform interrupt stack check.
// TODO(solanes): Merge with the real stack limit check above.
Label stack_check_interrupt, after_stack_check_interrupt;
__ CompareStackLimit(esp, StackLimitKind::kInterruptStackLimit);
__ j(below, &stack_check_interrupt);
__ bind(&after_stack_check_interrupt);
// The accumulator is already loaded with undefined.
__ mov(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Load the dispatch table into a register and dispatch to the bytecode
// handler at the current bytecode offset.
Label do_dispatch;
__ bind(&do_dispatch);
__ Move(kInterpreterDispatchTableRegister,
Immediate(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
__ movzx_b(ecx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ mov(kJavaScriptCallCodeStartRegister,
Operand(kInterpreterDispatchTableRegister, ecx,
times_system_pointer_size, 0));
__ call(kJavaScriptCallCodeStartRegister);
__ RecordComment("--- InterpreterEntryReturnPC point ---");
if (mode == InterpreterEntryTrampolineMode::kDefault) {
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(
masm->pc_offset());
} else {
DCHECK_EQ(mode, InterpreterEntryTrampolineMode::kForProfiling);
// Both versions must be the same up to this point otherwise the builtins
// will not be interchangable.
CHECK_EQ(
masm->isolate()->heap()->interpreter_entry_return_pc_offset().value(),
masm->pc_offset());
}
// Any returns to the entry trampoline are either due to the return bytecode
// or the interpreter tail calling a builtin and then a dispatch.
// Get bytecode array and bytecode offset from the stack frame.
__ mov(kInterpreterBytecodeArrayRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Either return, or advance to the next bytecode and dispatch.
Label do_return;
__ Push(eax);
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, ecx,
kInterpreterDispatchTableRegister, eax,
&do_return);
__ Pop(eax);
__ jmp(&do_dispatch);
__ bind(&do_return);
__ Pop(eax);
// The return value is in eax.
LeaveInterpreterFrame(masm, edx, ecx);
__ ret(0);
__ bind(&stack_check_interrupt);
// Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
// for the call to the StackGuard.
__ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp),
Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset)));
__ CallRuntime(Runtime::kStackGuard);
// After the call, restore the bytecode array, bytecode offset and accumulator
// registers again. Also, restore the bytecode offset in the stack to its
// previous value.
__ mov(kInterpreterBytecodeArrayRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
// It's ok to clobber kInterpreterBytecodeOffsetRegister since we are setting
// it again after continuing.
__ SmiTag(kInterpreterBytecodeOffsetRegister);
__ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp),
kInterpreterBytecodeOffsetRegister);
__ jmp(&after_stack_check_interrupt);
#ifndef V8_JITLESS
__ bind(&flags_need_processing);
{
// Restore actual argument count.
__ movd(eax, xmm0);
__ OptimizeCodeOrTailCallOptimizedCodeSlot(flags, xmm1);
}
__ bind(&compile_lazy);
// Restore actual argument count.
__ movd(eax, xmm0);
__ GenerateTailCallToReturnedCode(Runtime::kCompileLazy);
__ bind(&is_baseline);
{
__ movd(xmm2, ecx); // Save baseline data.
// Load the feedback vector from the closure.
__ mov(feedback_vector,
FieldOperand(closure, JSFunction::kFeedbackCellOffset));
__ mov(feedback_vector,
FieldOperand(feedback_vector, FeedbackCell::kValueOffset));
Label install_baseline_code;
// Check if feedback vector is valid. If not, call prepare for baseline to
// allocate it.
__ LoadMap(eax, feedback_vector);
__ CmpInstanceType(eax, FEEDBACK_VECTOR_TYPE);
__ j(not_equal, &install_baseline_code);
// Check the tiering state.
__ LoadFeedbackVectorFlagsAndJumpIfNeedsProcessing(
flags, xmm1, CodeKind::BASELINE, &flags_need_processing);
// Load the baseline code into the closure.
__ movd(ecx, xmm2);
static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
__ push(edx); // Spill.
__ push(ecx);
__ Push(xmm0, eax); // Save the argument count (currently in xmm0).
__ ReplaceClosureCodeWithOptimizedCode(ecx, closure, eax, ecx);
__ pop(eax); // Restore the argument count.
__ pop(ecx);
__ pop(edx);
__ JumpCodeObject(ecx);
__ bind(&install_baseline_code);
__ movd(eax, xmm0); // Recover argument count.
__ GenerateTailCallToReturnedCode(Runtime::kInstallBaselineCode);
}
#endif // !V8_JITLESS
__ bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3(); // Should not return.
}
static void GenerateInterpreterPushArgs(MacroAssembler* masm,
Register array_limit,
Register start_address) {
// ----------- S t a t e -------------
// -- start_address : Pointer to the last argument in the args array.
// -- array_limit : Pointer to one before the first argument in the
// args array.
// -----------------------------------
ASM_CODE_COMMENT(masm);
Label loop_header, loop_check;
__ jmp(&loop_check);
__ bind(&loop_header);
__ Push(Operand(array_limit, 0));
__ bind(&loop_check);
__ add(array_limit, Immediate(kSystemPointerSize));
__ cmp(array_limit, start_address);
__ j(below_equal, &loop_header, Label::kNear);
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- ecx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- edi : the target to call (can be any Object).
// -----------------------------------
const Register scratch = edx;
const Register argv = ecx;
Label stack_overflow;
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// The spread argument should not be pushed.
__ dec(eax);
}
// Add a stack check before pushing the arguments.
__ StackOverflowCheck(eax, scratch, &stack_overflow, true);
__ movd(xmm0, eax); // Spill number of arguments.
// Compute the expected number of arguments.
__ mov(scratch, eax);
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ dec(scratch); // Exclude receiver.
}
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(eax);
// Find the address of the last argument.
__ shl(scratch, kSystemPointerSizeLog2);
__ neg(scratch);
__ add(scratch, argv);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ movd(xmm1, scratch);
GenerateInterpreterPushArgs(masm, scratch, argv);
// Pass the spread in the register ecx.
__ movd(ecx, xmm1);
__ mov(ecx, Operand(ecx, 0));
} else {
GenerateInterpreterPushArgs(masm, scratch, argv);
}
// Push "undefined" as the receiver arg if we need to.
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ PushRoot(RootIndex::kUndefinedValue);
}
__ PushReturnAddressFrom(eax);
__ movd(eax, xmm0); // Restore number of arguments.
// Call the target.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
}
namespace {
// This function modifies start_addr, and only reads the contents of num_args
// register. scratch1 and scratch2 are used as temporary registers.
void Generate_InterpreterPushZeroAndArgsAndReturnAddress(
MacroAssembler* masm, Register num_args, Register start_addr,
Register scratch1, Register scratch2, int num_slots_to_move,
Label* stack_overflow) {
// We have to move return address and the temporary registers above it
// before we can copy arguments onto the stack. To achieve this:
// Step 1: Increment the stack pointer by num_args + 1 for receiver (if it is
// not included in argc already). Step 2: Move the return address and values
// around it to the top of stack. Step 3: Copy the arguments into the correct
// locations.
// current stack =====> required stack layout
// | | | return addr | (2) <-- esp (1)
// | | | addtl. slot |
// | | | arg N | (3)
// | | | .... |
// | | | arg 1 |
// | return addr | <-- esp | arg 0 |
// | addtl. slot | | receiver slot |
// Check for stack overflow before we increment the stack pointer.
__ StackOverflowCheck(num_args, scratch1, stack_overflow, true);
// Step 1 - Update the stack pointer.
__ lea(scratch1, Operand(num_args, times_system_pointer_size, 0));
__ AllocateStackSpace(scratch1);
// Step 2 move return_address and slots around it to the correct locations.
// Move from top to bottom, otherwise we may overwrite when num_args = 0 or 1,
// basically when the source and destination overlap. We at least need one
// extra slot for receiver, so no extra checks are required to avoid copy.
for (int i = 0; i < num_slots_to_move + 1; i++) {
__ mov(scratch1, Operand(esp, num_args, times_system_pointer_size,
i * kSystemPointerSize));
__ mov(Operand(esp, i * kSystemPointerSize), scratch1);
}
// Step 3 copy arguments to correct locations.
// Slot meant for receiver contains return address. Reset it so that
// we will not incorrectly interpret return address as an object.
__ mov(Operand(esp, (num_slots_to_move + 1) * kSystemPointerSize),
Immediate(0));
__ mov(scratch1, Immediate(0));
Label loop_header, loop_check;
__ jmp(&loop_check);
__ bind(&loop_header);
__ mov(scratch2, Operand(start_addr, 0));
__ mov(Operand(esp, scratch1, times_system_pointer_size,
(num_slots_to_move + 1) * kSystemPointerSize),
scratch2);
__ sub(start_addr, Immediate(kSystemPointerSize));
__ bind(&loop_check);
__ inc(scratch1);
__ cmp(scratch1, eax);
__ j(less, &loop_header, Label::kNear);
}
} // anonymous namespace
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- ecx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order
// as they are to be pushed onto the stack.
// -- esp[0] : return address
// -- esp[4] : allocation site feedback (if available or undefined)
// -- esp[8] : the new target
// -- esp[12] : the constructor
// -----------------------------------
Label stack_overflow;
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// The spread argument should not be pushed.
__ dec(eax);
}
// Push arguments and move return address and stack spill slots to the top of
// stack. The eax register is readonly. The ecx register will be modified. edx
// and edi are used as scratch registers.
Generate_InterpreterPushZeroAndArgsAndReturnAddress(
masm, eax, ecx, edx, edi,
InterpreterPushArgsThenConstructDescriptor::GetStackParameterCount(),
&stack_overflow);
// Call the appropriate constructor. eax and ecx already contain intended
// values, remaining registers still need to be initialized from the stack.
if (mode == InterpreterPushArgsMode::kArrayFunction) {
// Tail call to the array construct stub (still in the caller context at
// this point).
__ movd(xmm0, eax); // Spill number of arguments.
__ PopReturnAddressTo(eax);
__ Pop(kJavaScriptCallExtraArg1Register);
__ Pop(kJavaScriptCallNewTargetRegister);
__ Pop(kJavaScriptCallTargetRegister);
__ PushReturnAddressFrom(eax);
__ AssertFunction(kJavaScriptCallTargetRegister, eax);
__ AssertUndefinedOrAllocationSite(kJavaScriptCallExtraArg1Register, eax);
__ movd(eax, xmm0); // Reload number of arguments.
__ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl),
RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ movd(xmm0, eax); // Spill number of arguments.
__ PopReturnAddressTo(eax);
__ Drop(1); // The allocation site is unused.
__ Pop(kJavaScriptCallNewTargetRegister);
__ Pop(kJavaScriptCallTargetRegister);
// Pass the spread in the register ecx, overwriting ecx.
__ mov(ecx, Operand(ecx, 0));
__ PushReturnAddressFrom(eax);
__ movd(eax, xmm0); // Reload number of arguments.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
__ PopReturnAddressTo(ecx);
__ Drop(1); // The allocation site is unused.
__ Pop(kJavaScriptCallNewTargetRegister);
__ Pop(kJavaScriptCallTargetRegister);
__ PushReturnAddressFrom(ecx);
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ int3();
}
namespace {
void NewImplicitReceiver(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argument count
// -- edi : constructor to call
// -- edx : new target (checked to be a JSFunction)
//
// Stack:
// -- Implicit Receiver
// -- [arguments without receiver]
// -- Implicit Receiver
// -- Context
// -- FastConstructMarker
// -- FramePointer
Register implicit_receiver = ecx;
// Save live registers.
__ SmiTag(eax);
__ Push(eax); // Number of arguments
__ Push(edx); // NewTarget
__ Push(edi); // Target
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET);
// Save result.
__ mov(implicit_receiver, eax);
// Restore live registers.
__ Pop(edi);
__ Pop(edx);
__ Pop(eax);
__ SmiUntag(eax);
// Patch implicit receiver (in arguments)
__ mov(Operand(esp, 0 /* first argument */), implicit_receiver);
// Patch second implicit (in construct frame)
__ mov(Operand(ebp, FastConstructFrameConstants::kImplicitReceiverOffset),
implicit_receiver);
// Restore context.
__ mov(esi, Operand(ebp, FastConstructFrameConstants::kContextOffset));
}
} // namespace
// static
void Builtins::Generate_InterpreterPushArgsThenFastConstructFunction(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- ecx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order
// as they are to be pushed onto the stack.
// -- esi : the context
// -- esp[0] : return address
// -- esp[4] : allocation site feedback (if available or undefined)
// -- esp[8] : the new target
// -- esp[12] : the constructor (checked to be a JSFunction)
// -----------------------------------
// Load constructor.
__ mov(edi, Operand(esp, 3 * kSystemPointerSize));
__ AssertFunction(edi, edx);
// Check if target has a [[Construct]] internal method.
Label non_constructor;
// Load constructor.
__ LoadMap(edx, edi);
__ test_b(FieldOperand(edx, Map::kBitFieldOffset),
Immediate(Map::Bits1::IsConstructorBit::kMask));
__ j(zero, &non_constructor);
// Add a stack check before pushing arguments.
Label stack_overflow;
__ StackOverflowCheck(eax, edx, &stack_overflow, true);
// Spill number of arguments.
__ movd(xmm0, eax);
// Load NewTarget.
__ mov(edx, Operand(esp, 2 * kSystemPointerSize));
// Drop stub arguments from the stack.
__ PopReturnAddressTo(eax);
__ Drop(3); // The allocation site is unused.
__ PushReturnAddressFrom(eax);
// Enter a construct frame.
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::FAST_CONSTRUCT);
__ Push(esi);
// Implicit receiver stored in the construct frame.
__ PushRoot(RootIndex::kTheHoleValue);
// Push arguments + implicit receiver
__ movd(eax, xmm0); // Recover number of arguments.
// Find the address of the last argument.
__ lea(esi, Operand(eax, times_system_pointer_size,
-kJSArgcReceiverSlots * kSystemPointerSize));
__ neg(esi);
__ add(esi, ecx);
GenerateInterpreterPushArgs(masm, esi, ecx);
__ PushRoot(RootIndex::kTheHoleValue);
// Restore context.
__ mov(esi, Operand(ebp, FastConstructFrameConstants::kContextOffset));
// Check if it is a builtin call.
Label builtin_call;
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test(FieldOperand(ecx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
__ j(not_zero, &builtin_call);
// Check if we need to create an implicit receiver.
Label not_create_implicit_receiver;
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFlagsOffset));
__ DecodeField<SharedFunctionInfo::FunctionKindBits>(ecx);
__ JumpIfIsInRange(
ecx, static_cast<uint32_t>(FunctionKind::kDefaultDerivedConstructor),
static_cast<uint32_t>(FunctionKind::kDerivedConstructor), ecx,
¬_create_implicit_receiver, Label::kNear);
NewImplicitReceiver(masm);
__ bind(¬_create_implicit_receiver);
// Call the constructor.
__ InvokeFunction(edi, edx, eax, InvokeType::kCall);
// ----------- S t a t e -------------
// -- eax constructor result
//
// Stack:
// -- Implicit Receiver
// -- Context
// -- FastConstructMarker
// -- FramePointer
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label check_result, use_receiver, do_throw, leave_and_return;
// If the result is undefined, we jump out to using the implicit receiver.
__ JumpIfNotRoot(eax, RootIndex::kUndefinedValue, &check_result,
Label::kNear);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ mov(eax, Operand(esp, 0 * kSystemPointerSize));
__ JumpIfRoot(eax, RootIndex::kTheHoleValue, &do_throw);
__ bind(&leave_and_return);
__ LeaveFrame(StackFrame::FAST_CONSTRUCT);
__ ret(0);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
__ bind(&check_result);
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(eax, &use_receiver, Label::kNear);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
static_assert(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
__ j(above_equal, &leave_and_return, Label::kNear);
__ jmp(&use_receiver, Label::kNear);
__ bind(&do_throw);
// Restore context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// This should be unreachable.
__ int3();
__ bind(&builtin_call);
__ InvokeFunction(edi, edx, eax, InvokeType::kCall);
__ LeaveFrame(StackFrame::FAST_CONSTRUCT);
__ ret(0);
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
// Throw stack overflow exception.
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Label builtin_trampoline, trampoline_loaded;
Tagged<Smi> interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());
static constexpr Register scratch = ecx;
// If the SFI function_data is an InterpreterData, the function will have a
// custom copy of the interpreter entry trampoline for profiling. If so,
// get the custom trampoline, otherwise grab the entry address of the global
// trampoline.
__ mov(scratch, Operand(ebp, StandardFrameConstants::kFunctionOffset));
__ mov(scratch, FieldOperand(scratch, JSFunction::kSharedFunctionInfoOffset));
__ mov(scratch,
FieldOperand(scratch, SharedFunctionInfo::kFunctionDataOffset));
__ Push(eax);
__ CmpObjectType(scratch, INTERPRETER_DATA_TYPE, eax);
__ j(not_equal, &builtin_trampoline, Label::kNear);
__ mov(scratch,
FieldOperand(scratch, InterpreterData::kInterpreterTrampolineOffset));
__ LoadCodeInstructionStart(scratch, scratch);
__ jmp(&trampoline_loaded, Label::kNear);
__ bind(&builtin_trampoline);
__ mov(scratch,
__ ExternalReferenceAsOperand(
ExternalReference::
address_of_interpreter_entry_trampoline_instruction_start(
masm->isolate()),
scratch));
__ bind(&trampoline_loaded);
__ Pop(eax);
__ add(scratch, Immediate(interpreter_entry_return_pc_offset.value()));
__ push(scratch);
// Initialize the dispatch table register.
__ Move(kInterpreterDispatchTableRegister,
Immediate(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Get the bytecode array pointer from the frame.
__ mov(kInterpreterBytecodeArrayRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (v8_flags.debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
scratch);
__ Assert(
equal,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
if (v8_flags.debug_code) {
Label okay;
__ cmp(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ j(greater_equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
}
// Dispatch to the target bytecode.
__ movzx_b(scratch, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ mov(kJavaScriptCallCodeStartRegister,
Operand(kInterpreterDispatchTableRegister, scratch,
times_system_pointer_size, 0));
__ jmp(kJavaScriptCallCodeStartRegister);
}
void Builtins::Generate_InterpreterEnterAtNextBytecode(MacroAssembler* masm) {
// Get bytecode array and bytecode offset from the stack frame.
__ mov(kInterpreterBytecodeArrayRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
Label enter_bytecode, function_entry_bytecode;
__ cmp(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset));
__ j(equal, &function_entry_bytecode);
// Advance to the next bytecode.
Label if_return;
__ Push(eax);
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, ecx, esi,
eax, &if_return);
__ Pop(eax);
__ bind(&enter_bytecode);
// Convert new bytecode offset to a Smi and save in the stackframe.
__ mov(ecx, kInterpreterBytecodeOffsetRegister);
__ SmiTag(ecx);
__ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp), ecx);
Generate_InterpreterEnterBytecode(masm);
__ bind(&function_entry_bytecode);
// If the code deoptimizes during the implicit function entry stack interrupt
// check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
// not a valid bytecode offset. Detect this case and advance to the first
// actual bytecode.
__ mov(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ jmp(&enter_bytecode);
// We should never take the if_return path.
__ bind(&if_return);
// No need to pop eax here since we will be aborting anyway.
__ Abort(AbortReason::kInvalidBytecodeAdvance);
}
void Builtins::Generate_InterpreterEnterAtBytecode(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
// static
void Builtins::Generate_BaselineOutOfLinePrologue(MacroAssembler* masm) {
auto descriptor =
Builtins::CallInterfaceDescriptorFor(Builtin::kBaselineOutOfLinePrologue);
Register arg_count = descriptor.GetRegisterParameter(
BaselineOutOfLinePrologueDescriptor::kJavaScriptCallArgCount);
Register frame_size = descriptor.GetRegisterParameter(
BaselineOutOfLinePrologueDescriptor::kStackFrameSize);
// Save argument count and bytecode array.
XMMRegister saved_arg_count = xmm0;
XMMRegister saved_bytecode_array = xmm1;
XMMRegister saved_frame_size = xmm2;
XMMRegister saved_feedback_cell = xmm3;
XMMRegister saved_feedback_vector = xmm4;
__ movd(saved_arg_count, arg_count);
__ movd(saved_frame_size, frame_size);
// Use the arg count (eax) as the scratch register.
Register scratch = arg_count;
// Load the feedback cell and vector from the closure.
Register closure = descriptor.GetRegisterParameter(
BaselineOutOfLinePrologueDescriptor::kClosure);
Register feedback_cell = ecx;
__ mov(feedback_cell, FieldOperand(closure, JSFunction::kFeedbackCellOffset));
__ movd(saved_feedback_cell, feedback_cell);
Register feedback_vector = ecx;
__ mov(feedback_vector,
FieldOperand(feedback_cell, FeedbackCell::kValueOffset));
__ AssertFeedbackVector(feedback_vector, scratch);
feedback_cell = no_reg;
// Load the optimization state from the feedback vector and re-use the
// register.
Label flags_need_processing;
Register flags = ecx;
__ LoadFeedbackVectorFlagsAndJumpIfNeedsProcessing(
flags, saved_feedback_vector, CodeKind::BASELINE, &flags_need_processing);
// Reload the feedback vector.
__ movd(feedback_vector, saved_feedback_vector);
{
DCHECK_EQ(arg_count, eax);
ResetFeedbackVectorOsrUrgency(masm, feedback_vector, eax);
__ movd(arg_count, saved_arg_count); // Restore eax.
}
// Increment the invocation count.
__ inc(FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset));
XMMRegister return_address = xmm5;
// Save the return address, so that we can push it to the end of the newly
// set-up frame once we're done setting it up.
__ PopReturnAddressTo(return_address, scratch);
// The bytecode array was pushed to the stack by the caller.
__ Pop(saved_bytecode_array, scratch);
FrameScope frame_scope(masm, StackFrame::MANUAL);
{
ASM_CODE_COMMENT_STRING(masm, "Frame Setup");
__ EnterFrame(StackFrame::BASELINE);
__ Push(descriptor.GetRegisterParameter(
BaselineOutOfLinePrologueDescriptor::kCalleeContext)); // Callee's
// context.
Register callee_js_function = descriptor.GetRegisterParameter(
BaselineOutOfLinePrologueDescriptor::kClosure);
DCHECK_EQ(callee_js_function, kJavaScriptCallTargetRegister);
DCHECK_EQ(callee_js_function, kJSFunctionRegister);
ResetJSFunctionAge(masm, callee_js_function, scratch);
__ Push(callee_js_function); // Callee's JS function.
__ Push(saved_arg_count, scratch); // Push actual argument count.
// We'll use the bytecode for both code age/OSR resetting, and pushing onto
// the frame, so load it into a register.
__ Push(saved_bytecode_array, scratch);
__ Push(saved_feedback_cell, scratch);
__ Push(saved_feedback_vector, scratch);
}
Label call_stack_guard;
{
ASM_CODE_COMMENT_STRING(masm, "Stack/interrupt check");
// Stack check. This folds the checks for both the interrupt stack limit
// check and the real stack limit into one by just checking for the
// interrupt limit. The interrupt limit is either equal to the real stack
// limit or tighter. By ensuring we have space until that limit after
// building the frame we can quickly precheck both at once.
//
// TODO(v8:11429): Backport this folded check to the
// InterpreterEntryTrampoline.
__ movd(frame_size, saved_frame_size);
__ Move(scratch, esp);
DCHECK_NE(frame_size, kJavaScriptCallNewTargetRegister);
__ sub(scratch, frame_size);
__ CompareStackLimit(scratch, StackLimitKind::kInterruptStackLimit);
__ j(below, &call_stack_guard);
}
// Push the return address back onto the stack for return.
__ PushReturnAddressFrom(return_address, scratch);
// Return to caller pushed pc, without any frame teardown.
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ Ret();
__ bind(&flags_need_processing);
{
ASM_CODE_COMMENT_STRING(masm, "Optimized marker check");
// Drop the return address and bytecode array, rebalancing the return stack
// buffer by using JumpMode::kPushAndReturn. We can't leave the slot and
// overwrite it on return since we may do a runtime call along the way that
// requires the stack to only contain valid frames.
__ Drop(2);
__ movd(arg_count, saved_arg_count); // Restore actual argument count.
__ OptimizeCodeOrTailCallOptimizedCodeSlot(flags, saved_feedback_vector);
__ Trap();
}
__ bind(&call_stack_guard);
{
ASM_CODE_COMMENT_STRING(masm, "Stack/interrupt call");
{
// Push the baseline code return address now, as if it had been pushed by
// the call to this builtin.
__ PushReturnAddressFrom(return_address, scratch);
FrameScope frame_scope(masm, StackFrame::INTERNAL);
// Save incoming new target or generator
__ Push(kJavaScriptCallNewTargetRegister);
__ SmiTag(frame_size);
__ Push(frame_size);
__ CallRuntime(Runtime::kStackGuardWithGap, 1);
__ Pop(kJavaScriptCallNewTargetRegister);
}
// Return to caller pushed pc, without any frame teardown.
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ Ret();
}
}
// static
void Builtins::Generate_BaselineOutOfLinePrologueDeopt(MacroAssembler* masm) {
// We're here because we got deopted during BaselineOutOfLinePrologue's stack
// check. Undo all its frame creation and call into the interpreter instead.
// Drop the feedback vector.
__ Pop(ecx);
// Drop bytecode offset (was the feedback vector but got replaced during
// deopt).
__ Pop(ecx);
// Drop bytecode array
__ Pop(ecx);
// argc.
__ Pop(kJavaScriptCallArgCountRegister);
// Closure.
__ Pop(kJavaScriptCallTargetRegister);
// Context.
__ Pop(kContextRegister);
// Drop frame pointer
__ LeaveFrame(StackFrame::BASELINE);
// Enter the interpreter.
__ TailCallBuiltin(Builtin::kInterpreterEntryTrampoline);
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
if (with_result) {
if (java_script_builtin) {
// xmm0 is not included in the allocateable registers.
__ movd(xmm0, eax);
} else {
// Overwrite the hole inserted by the deoptimizer with the return value
// from the LAZY deopt point.
__ mov(
Operand(esp, config->num_allocatable_general_registers() *
kSystemPointerSize +
BuiltinContinuationFrameConstants::kFixedFrameSize),
eax);
}
}
// Replace the builtin index Smi on the stack with the start address of the
// builtin loaded from the builtins table. The ret below will return to this
// address.
int offset_to_builtin_index = allocatable_register_count * kSystemPointerSize;
__ mov(eax, Operand(esp, offset_to_builtin_index));
__ LoadEntryFromBuiltinIndex(eax, eax);
__ mov(Operand(esp, offset_to_builtin_index), eax);
for (int i = allocatable_register_count - 1; i >= 0; --i) {
int code = config->GetAllocatableGeneralCode(i);
__ pop(Register::from_code(code));
if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
__ SmiUntag(Register::from_code(code));
}
}
if (with_result && java_script_builtin) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point. eax contains the arguments count, the return value
// from LAZY is always the last argument.
__ movd(Operand(esp, eax, times_system_pointer_size,
BuiltinContinuationFrameConstants::kFixedFrameSize -
kJSArgcReceiverSlots * kSystemPointerSize),
xmm0);
}
__ mov(
ebp,
Operand(esp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
const int offsetToPC =
BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp -
kSystemPointerSize;
__ pop(Operand(esp, offsetToPC));
__ Drop(offsetToPC / kSystemPointerSize);
__ ret(0);
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyDeoptimized);
// Tear down internal frame.
}
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), eax.code());
__ mov(eax, Operand(esp, 1 * kSystemPointerSize));
__ ret(1 * kSystemPointerSize); // Remove eax.
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[1] : receiver
// -- esp[2] : thisArg
// -- esp[3] : argArray
// -----------------------------------
// 1. Load receiver into xmm0, argArray into edx (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Label no_arg_array, no_this_arg;
StackArgumentsAccessor args(eax);
// Spill receiver to allow the usage of edi as a scratch register.
__ movd(xmm0, args.GetReceiverOperand());
__ LoadRoot(edx, RootIndex::kUndefinedValue);
__ mov(edi, edx);
__ cmp(eax, Immediate(JSParameterCount(0)));
__ j(equal, &no_this_arg, Label::kNear);
{
__ mov(edi, args[1]);
__ cmp(eax, Immediate(JSParameterCount(1)));
__ j(equal, &no_arg_array, Label::kNear);
__ mov(edx, args[2]);
__ bind(&no_arg_array);
}
__ bind(&no_this_arg);
__ DropArgumentsAndPushNewReceiver(eax, edi, ecx,
MacroAssembler::kCountIsInteger,
MacroAssembler::kCountIncludesReceiver);
// Restore receiver to edi.
__ movd(edi, xmm0);
}
// ----------- S t a t e -------------
// -- edx : argArray
// -- edi : receiver
// -- esp[0] : return address
// -- esp[4] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(edx, RootIndex::kNullValue, &no_arguments, Label::kNear);
__ JumpIfRoot(edx, RootIndex::kUndefinedValue, &no_arguments, Label::kNear);
// 4a. Apply the receiver to the given argArray.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ bind(&no_arguments);
{
__ Move(eax, JSParameterCount(0));
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// Stack Layout:
// esp[0] : Return address
// esp[8] : Argument 0 (receiver: callable to call)
// esp[16] : Argument 1
// ...
// esp[8 * n] : Argument n-1
// esp[8 * (n + 1)] : Argument n
// eax contains the number of arguments, n.
// 1. Get the callable to call (passed as receiver) from the stack.
{
StackArgumentsAccessor args(eax);
__ mov(edi, args.GetReceiverOperand());
}
// 2. Save the return address and drop the callable.
__ PopReturnAddressTo(edx);
__ Pop(ecx);
// 3. Make sure we have at least one argument.
{
Label done;
__ cmp(eax, Immediate(JSParameterCount(0)));
__ j(greater, &done, Label::kNear);
__ PushRoot(RootIndex::kUndefinedValue);
__ inc(eax);
__ bind(&done);
}
// 4. Push back the return address one slot down on the stack (overwriting the
// original callable), making the original first argument the new receiver.
__ PushReturnAddressFrom(edx);
__ dec(eax); // One fewer argument (first argument is new receiver).
// 5. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : receiver
// -- esp[8] : target (if argc >= 1)
// -- esp[12] : thisArgument (if argc >= 2)
// -- esp[16] : argumentsList (if argc == 3)
// -----------------------------------
// 1. Load target into edi (if present), argumentsList into edx (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
Label done;
StackArgumentsAccessor args(eax);
__ LoadRoot(edi, RootIndex::kUndefinedValue);
__ mov(edx, edi);
__ mov(ecx, edi);
__ cmp(eax, Immediate(JSParameterCount(1)));
__ j(below, &done, Label::kNear);
__ mov(edi, args[1]); // target
__ j(equal, &done, Label::kNear);
__ mov(ecx, args[2]); // thisArgument
__ cmp(eax, Immediate(JSParameterCount(3)));
__ j(below, &done, Label::kNear);
__ mov(edx, args[3]); // argumentsList
__ bind(&done);
// Spill argumentsList to use edx as a scratch register.
__ movd(xmm0, edx);
__ DropArgumentsAndPushNewReceiver(eax, ecx, edx,
MacroAssembler::kCountIsInteger,
MacroAssembler::kCountIncludesReceiver);
// Restore argumentsList.
__ movd(edx, xmm0);
}
// ----------- S t a t e -------------
// -- edx : argumentsList
// -- edi : target
// -- esp[0] : return address
// -- esp[4] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Apply the target to the given argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : receiver
// -- esp[8] : target
// -- esp[12] : argumentsList
// -- esp[16] : new.target (optional)
// -----------------------------------
// 1. Load target into edi (if present), argumentsList into ecx (if present),
// new.target into edx (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
Label done;
StackArgumentsAccessor args(eax);
__ LoadRoot(edi, RootIndex::kUndefinedValue);
__ mov(edx, edi);
__ mov(ecx, edi);
__ cmp(eax, Immediate(JSParameterCount(1)));
__ j(below, &done, Label::kNear);
__ mov(edi, args[1]); // target
__ mov(edx, edi);
__ j(equal, &done, Label::kNear);
__ mov(ecx, args[2]); // argumentsList
__ cmp(eax, Immediate(JSParameterCount(3)));
__ j(below, &done, Label::kNear);
__ mov(edx, args[3]); // new.target
__ bind(&done);
// Spill argumentsList to use ecx as a scratch register.
__ movd(xmm0, ecx);
__ DropArgumentsAndPushNewReceiver(
eax, masm->RootAsOperand(RootIndex::kUndefinedValue), ecx,
MacroAssembler::kCountIsInteger,
MacroAssembler::kCountIncludesReceiver);
// Restore argumentsList.
__ movd(ecx, xmm0);
}
// ----------- S t a t e -------------
// -- ecx : argumentsList
// -- edx : new.target
// -- edi : target
// -- esp[0] : return address
// -- esp[4] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
RelocInfo::CODE_TARGET);
}
namespace {
// Allocate new stack space for |count| arguments and shift all existing
// arguments already on the stack. |pointer_to_new_space_out| points to the
// first free slot on the stack to copy additional arguments to and
// |argc_in_out| is updated to include |count|.
void Generate_AllocateSpaceAndShiftExistingArguments(
MacroAssembler* masm, Register count, Register argc_in_out,
Register pointer_to_new_space_out, Register scratch1, Register scratch2) {
DCHECK(!AreAliased(count, argc_in_out, pointer_to_new_space_out, scratch1,
scratch2));
// Use pointer_to_new_space_out as scratch until we set it to the correct
// value at the end.
Register old_esp = pointer_to_new_space_out;
Register new_space = scratch1;
__ mov(old_esp, esp);
__ lea(new_space, Operand(count, times_system_pointer_size, 0));
__ AllocateStackSpace(new_space);
Register current = scratch1;
Register value = scratch2;
Label loop, entry;
__ mov(current, 0);
__ jmp(&entry);
__ bind(&loop);
__ mov(value, Operand(old_esp, current, times_system_pointer_size, 0));
__ mov(Operand(esp, current, times_system_pointer_size, 0), value);
__ inc(current);
__ bind(&entry);
__ cmp(current, argc_in_out);
__ j(less_equal, &loop, Label::kNear);
// Point to the next free slot above the shifted arguments (argc + 1 slot for
// the return address).
__ lea(
pointer_to_new_space_out,
Operand(esp, argc_in_out, times_system_pointer_size, kSystemPointerSize));
// Update the total number of arguments.
__ add(argc_in_out, count);
}
} // namespace
// static
// TODO(v8:11615): Observe Code::kMaxArguments in
// CallOrConstructVarargs
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- edi : target
// -- esi : context for the Call / Construct builtin
// -- eax : number of parameters on the stack
// -- ecx : len (number of elements to from args)
// -- edx : new.target (checked to be constructor or undefined)
// -- esp[4] : arguments list (a FixedArray)
// -- esp[0] : return address.
// -----------------------------------
__ movd(xmm0, edx); // Spill new.target.
__ movd(xmm1, edi); // Spill target.
__ movd(xmm3, esi); // Spill the context.
const Register kArgumentsList = esi;
const Register kArgumentsLength = ecx;
__ PopReturnAddressTo(edx);
__ pop(kArgumentsList);
__ PushReturnAddressFrom(edx);
if (v8_flags.debug_code) {
// Allow kArgumentsList to be a FixedArray, or a FixedDoubleArray if
// kArgumentsLength == 0.
Label ok, fail;
__ AssertNotSmi(kArgumentsList);
__ mov(edx, FieldOperand(kArgumentsList, HeapObject::kMapOffset));
__ CmpInstanceType(edx, FIXED_ARRAY_TYPE);
__ j(equal, &ok);
__ CmpInstanceType(edx, FIXED_DOUBLE_ARRAY_TYPE);
__ j(not_equal, &fail);
__ cmp(kArgumentsLength, 0);
__ j(equal, &ok);
// Fall through.
__ bind(&fail);
__ Abort(AbortReason::kOperandIsNotAFixedArray);
__ bind(&ok);
}
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ StackOverflowCheck(kArgumentsLength, edx, &stack_overflow);
__ movd(xmm4, kArgumentsList); // Spill the arguments list.
// Move the arguments already in the stack,
// including the receiver and the return address.
// kArgumentsLength (ecx): Number of arguments to make room for.
// eax: Number of arguments already on the stack.
// edx: Points to first free slot on the stack after arguments were shifted.
Generate_AllocateSpaceAndShiftExistingArguments(masm, kArgumentsLength, eax,
edx, edi, esi);
__ movd(kArgumentsList, xmm4); // Recover arguments list.
__ movd(xmm2, eax); // Spill argument count.
// Push additional arguments onto the stack.
{
__ Move(eax, Immediate(0));
Label done, push, loop;
__ bind(&loop);
__ cmp(eax, kArgumentsLength);
__ j(equal, &done, Label::kNear);
// Turn the hole into undefined as we go.
__ mov(edi, FieldOperand(kArgumentsList, eax, times_tagged_size,
FixedArray::kHeaderSize));
__ CompareRoot(edi, RootIndex::kTheHoleValue);
__ j(not_equal, &push, Label::kNear);
__ LoadRoot(edi, RootIndex::kUndefinedValue);
__ bind(&push);
__ mov(Operand(edx, 0), edi);
__ add(edx, Immediate(kSystemPointerSize));
__ inc(eax);
__ jmp(&loop);
__ bind(&done);
}
// Restore eax, edi and edx.
__ movd(esi, xmm3); // Restore the context.
__ movd(eax, xmm2); // Restore argument count.
__ movd(edi, xmm1); // Restore target.
__ movd(edx, xmm0); // Restore new.target.
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
__ bind(&stack_overflow);
__ movd(esi, xmm3); // Restore the context.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
CallOrConstructMode mode,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- edi : the target to call (can be any Object)
// -- esi : context for the Call / Construct builtin
// -- edx : the new target (for [[Construct]] calls)
// -- ecx : start index (to support rest parameters)
// -----------------------------------
__ movd(xmm0, esi); // Spill the context.
Register scratch = esi;
// Check if new.target has a [[Construct]] internal method.
if (mode == CallOrConstructMode::kConstruct) {
Label new_target_constructor, new_target_not_constructor;
__ JumpIfSmi(edx, &new_target_not_constructor, Label::kNear);
__ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
__ test_b(FieldOperand(scratch, Map::kBitFieldOffset),
Immediate(Map::Bits1::IsConstructorBit::kMask));
__ j(not_zero, &new_target_constructor, Label::kNear);
__ bind(&new_target_not_constructor);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ Push(edx);
__ movd(esi, xmm0); // Restore the context.
__ CallRuntime(Runtime::kThrowNotConstructor);
}
__ bind(&new_target_constructor);
}
__ movd(xmm1, edx); // Preserve new.target (in case of [[Construct]]).
Label stack_done, stack_overflow;
__ mov(edx, Operand(ebp, StandardFrameConstants::kArgCOffset));
__ dec(edx); // Exclude receiver.
__ sub(edx, ecx);
__ j(less_equal, &stack_done);
{
// ----------- S t a t e -------------
// -- eax : the number of arguments already in the stack
// -- ecx : start index (to support rest parameters)
// -- edx : number of arguments to copy, i.e. arguments count - start index
// -- edi : the target to call (can be any Object)
// -- ebp : point to the caller stack frame
// -- xmm0 : context for the Call / Construct builtin
// -- xmm1 : the new target (for [[Construct]] calls)
// -----------------------------------
// Forward the arguments from the caller frame.
__ movd(xmm2, edi); // Preserve the target to call.
__ StackOverflowCheck(edx, edi, &stack_overflow);
__ movd(xmm3, ebx); // Preserve root register.
Register scratch = ebx;
// Move the arguments already in the stack,
// including the receiver and the return address.
// edx: Number of arguments to make room for.
// eax: Number of arguments already on the stack.
// esi: Points to first free slot on the stack after arguments were shifted.
Generate_AllocateSpaceAndShiftExistingArguments(masm, edx, eax, esi, ebx,
edi);
// Point to the first argument to copy (skipping receiver).
__ lea(ecx, Operand(ecx, times_system_pointer_size,
CommonFrameConstants::kFixedFrameSizeAboveFp +
kSystemPointerSize));
__ add(ecx, ebp);
// Copy the additional caller arguments onto the stack.
// TODO(victorgomes): Consider using forward order as potentially more cache
// friendly.
{
Register src = ecx, dest = esi, num = edx;
Label loop;
__ bind(&loop);
__ dec(num);
__ mov(scratch, Operand(src, num, times_system_pointer_size, 0));
__ mov(Operand(dest, num, times_system_pointer_size, 0), scratch);
__ j(not_zero, &loop);
}
__ movd(ebx, xmm3); // Restore root register.
__ movd(edi, xmm2); // Restore the target to call.
}
__ bind(&stack_done);
__ movd(edx, xmm1); // Restore new.target (in case of [[Construct]]).
__ movd(esi, xmm0); // Restore the context.
// Tail-call to the {code} handler.
__ Jump(code, RelocInfo::CODE_TARGET);
__ bind(&stack_overflow);
__ movd(edi, xmm2); // Restore the target to call.
__ movd(esi, xmm0); // Restore the context.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- edi : the function to call (checked to be a JSFunction)
// -----------------------------------
StackArgumentsAccessor args(eax);
__ AssertCallableFunction(edi, edx);
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::IsNativeBit::kMask |
SharedFunctionInfo::IsStrictBit::kMask));
__ j(not_zero, &done_convert);
{
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- edx : the shared function info.
// -- edi : the function to call (checked to be a JSFunction)
// -- esi : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(ecx);
} else {
Label convert_to_object, convert_receiver;
__ mov(ecx, args.GetReceiverOperand());
__ JumpIfSmi(ecx, &convert_to_object, Label::kNear);
static_assert(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ecx); // Clobbers ecx.
__ j(above_equal, &done_convert);
// Reload the receiver (it was clobbered by CmpObjectType).
__ mov(ecx, args.GetReceiverOperand());
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(ecx, RootIndex::kUndefinedValue, &convert_global_proxy,
Label::kNear);
__ JumpIfNotRoot(ecx, RootIndex::kNullValue, &convert_to_object,
Label::kNear);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(ecx);
}
__ jmp(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(eax);
__ Push(eax);
__ Push(edi);
__ mov(eax, ecx);
__ Push(esi);
__ Call(BUILTIN_CODE(masm->isolate(), ToObject),
RelocInfo::CODE_TARGET);
__ Pop(esi);
__ mov(ecx, eax);
__ Pop(edi);
__ Pop(eax);
__ SmiUntag(eax);
}
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ mov(args.GetReceiverOperand(), ecx);
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- edx : the shared function info.
// -- edi : the function to call (checked to be a JSFunction)
// -- esi : the function context.
// -----------------------------------
__ movzx_w(
ecx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
__ InvokeFunctionCode(edi, no_reg, ecx, eax, InvokeType::kJump);
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- edx : new.target (only in case of [[Construct]])
// -- edi : target (checked to be a JSBoundFunction)
// -----------------------------------
__ movd(xmm0, edx); // Spill edx.
// Load [[BoundArguments]] into ecx and length of that into edx.
Label no_bound_arguments;
__ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
__ mov(edx, FieldOperand(ecx, FixedArray::kLengthOffset));
__ SmiUntag(edx);
__ test(edx, edx);
__ j(zero, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- xmm0 : new.target (only in case of [[Construct]])
// -- edi : target (checked to be a JSBoundFunction)
// -- ecx : the [[BoundArguments]] (implemented as FixedArray)
// -- edx : the number of [[BoundArguments]]
// -----------------------------------
// Check the stack for overflow.
{
Label done, stack_overflow;
__ StackOverflowCheck(edx, ecx, &stack_overflow);
__ jmp(&done);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3();
}
__ bind(&done);
}
// Spill context.
__ movd(xmm3, esi);
// Save Return Adress and Receiver into registers.
__ pop(esi);
__ movd(xmm1, esi);
__ pop(esi);
__ movd(xmm2, esi);
// Push [[BoundArguments]] to the stack.
{
Label loop;
__ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
__ mov(edx, FieldOperand(ecx, FixedArray::kLengthOffset));
__ SmiUntag(edx);
// Adjust effective number of arguments (eax contains the number of
// arguments from the call not including receiver plus the number of
// [[BoundArguments]]).
__ add(eax, edx);
__ bind(&loop);
__ dec(edx);
__ mov(esi, FieldOperand(ecx, edx, times_tagged_size,
FixedArray::kHeaderSize));
__ push(esi);
__ j(greater, &loop);
}
// Restore Receiver and Return Address.
__ movd(esi, xmm2);
__ push(esi);
__ movd(esi, xmm1);
__ push(esi);
// Restore context.
__ movd(esi, xmm3);
}
__ bind(&no_bound_arguments);
__ movd(edx, xmm0); // Reload edx.
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- edi : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(edi);
// Patch the receiver to [[BoundThis]].
StackArgumentsAccessor args(eax);
__ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundThisOffset));
__ mov(args.GetReceiverOperand(), ecx);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- edi : the target to call (can be any Object).
// -----------------------------------
Register argc = eax;
Register target = edi;
Register map = ecx;
Register instance_type = edx;
DCHECK(!AreAliased(argc, target, map, instance_type));
StackArgumentsAccessor args(argc);
Label non_callable, non_smi, non_callable_jsfunction, non_jsboundfunction,
non_proxy, non_wrapped_function, class_constructor;
__ JumpIfSmi(target, &non_callable);
__ bind(&non_smi);
__ LoadMap(map, target);
__ CmpInstanceTypeRange(map, instance_type, map,
FIRST_CALLABLE_JS_FUNCTION_TYPE,
LAST_CALLABLE_JS_FUNCTION_TYPE);
__ j(above, &non_callable_jsfunction);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET);
__ bind(&non_callable_jsfunction);
__ cmpw(instance_type, Immediate(JS_BOUND_FUNCTION_TYPE));
__ j(not_equal, &non_jsboundfunction);
__ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
RelocInfo::CODE_TARGET);
// Check if target is a proxy and call CallProxy external builtin
__ bind(&non_jsboundfunction);
__ LoadMap(map, target);
__ test_b(FieldOperand(map, Map::kBitFieldOffset),
Immediate(Map::Bits1::IsCallableBit::kMask));
__ j(zero, &non_callable);
// Call CallProxy external builtin
__ cmpw(instance_type, Immediate(JS_PROXY_TYPE));
__ j(not_equal, &non_proxy);
__ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
// Check if target is a wrapped function and call CallWrappedFunction external
// builtin
__ bind(&non_proxy);
__ cmpw(instance_type, Immediate(JS_WRAPPED_FUNCTION_TYPE));
__ j(not_equal, &non_wrapped_function);
__ Jump(BUILTIN_CODE(masm->isolate(), CallWrappedFunction),
RelocInfo::CODE_TARGET);
// ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
__ bind(&non_wrapped_function);
__ cmpw(instance_type, Immediate(JS_CLASS_CONSTRUCTOR_TYPE));
__ j(equal, &class_constructor);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
// Overwrite the original receiver with the (original) target.
__ mov(args.GetReceiverOperand(), target);
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(target, Context::CALL_AS_FUNCTION_DELEGATE_INDEX);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(target);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
__ Trap(); // Unreachable.
}
// 4. The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ Push(target);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
__ Trap(); // Unreachable.
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- edx : the new target (checked to be a constructor)
// -- edi : the constructor to call (checked to be a JSFunction)
// -----------------------------------
__ AssertConstructor(edi);
__ AssertFunction(edi, ecx);
Label call_generic_stub;
// Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test(FieldOperand(ecx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
__ j(zero, &call_generic_stub, Label::kNear);
// Calling convention for function specific ConstructStubs require
// ecx to contain either an AllocationSite or undefined.
__ LoadRoot(ecx, RootIndex::kUndefinedValue);
__ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
RelocInfo::CODE_TARGET);
__ bind(&call_generic_stub);
// Calling convention for function specific ConstructStubs require
// ecx to contain either an AllocationSite or undefined.
__ LoadRoot(ecx, RootIndex::kUndefinedValue);
__ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- edx : the new target (checked to be a constructor)
// -- edi : the constructor to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertConstructor(edi);
__ AssertBoundFunction(edi);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label done;
__ cmp(edi, edx);
__ j(not_equal, &done, Label::kNear);
__ mov(edx, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
__ bind(&done);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments
// -- edx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- edi : the constructor to call (can be any Object)
// -----------------------------------
Register argc = eax;
Register target = edi;
Register map = ecx;
DCHECK(!AreAliased(argc, target, map));
StackArgumentsAccessor args(argc);
// Check if target is a Smi.
Label non_constructor, non_proxy, non_jsfunction, non_jsboundfunction;
__ JumpIfSmi(target, &non_constructor);
// Check if target has a [[Construct]] internal method.
__ mov(map, FieldOperand(target, HeapObject::kMapOffset));
__ test_b(FieldOperand(map, Map::kBitFieldOffset),
Immediate(Map::Bits1::IsConstructorBit::kMask));
__ j(zero, &non_constructor);
// Dispatch based on instance type.
__ CmpInstanceTypeRange(map, map, map, FIRST_JS_FUNCTION_TYPE,
LAST_JS_FUNCTION_TYPE);
__ j(above, &non_jsfunction);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
RelocInfo::CODE_TARGET);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ bind(&non_jsfunction);
__ mov(map, FieldOperand(target, HeapObject::kMapOffset));
__ CmpInstanceType(map, JS_BOUND_FUNCTION_TYPE);
__ j(not_equal, &non_jsboundfunction);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
RelocInfo::CODE_TARGET);
// Only dispatch to proxies after checking whether they are constructors.
__ bind(&non_jsboundfunction);
__ CmpInstanceType(map, JS_PROXY_TYPE);
__ j(not_equal, &non_proxy);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
__ bind(&non_proxy);
{
// Overwrite the original receiver with the (original) target.
__ mov(args.GetReceiverOperand(), target);
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(target,
Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
}
namespace {
void Generate_OSREntry(MacroAssembler* masm, Register entry_address) {
ASM_CODE_COMMENT(masm);
// Overwrite the return address on the stack.
__ mov(Operand(esp, 0), entry_address);
// And "return" to the OSR entry point of the function.
__ ret(0);
}
enum class OsrSourceTier {
kInterpreter,
kBaseline,
};
void OnStackReplacement(MacroAssembler* masm, OsrSourceTier source,
Register maybe_target_code) {
Label jump_to_optimized_code;
{
// If maybe_target_code is not null, no need to call into runtime. A
// precondition here is: if maybe_target_code is a InstructionStream object,
// it must NOT be marked_for_deoptimization (callers must ensure this).
__ cmp(maybe_target_code, Immediate(0));
__ j(not_equal, &jump_to_optimized_code, Label::kNear);
}
ASM_CODE_COMMENT(masm);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kCompileOptimizedOSR);
}
// If the code object is null, just return to the caller.
__ cmp(eax, Immediate(0));
__ j(not_equal, &jump_to_optimized_code, Label::kNear);
__ ret(0);
__ bind(&jump_to_optimized_code);
DCHECK_EQ(maybe_target_code, eax); // Already in the right spot.
// OSR entry tracing.
{
Label next;
__ cmpb(__ ExternalReferenceAsOperand(
ExternalReference::address_of_log_or_trace_osr(), ecx),
Immediate(0));
__ j(equal, &next, Label::kNear);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(eax); // Preserve the code object.
__ CallRuntime(Runtime::kLogOrTraceOptimizedOSREntry, 0);
__ Pop(eax);
}
__ bind(&next);
}
if (source == OsrSourceTier::kInterpreter) {
// Drop the handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
__ leave();
}
// Load deoptimization data from the code object.
__ mov(ecx, Operand(eax, Code::kDeoptimizationDataOrInterpreterDataOffset -
kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
__ mov(ecx, Operand(ecx, FixedArray::OffsetOfElementAt(
DeoptimizationData::kOsrPcOffsetIndex) -
kHeapObjectTag));
__ SmiUntag(ecx);
__ LoadCodeInstructionStart(eax, eax);
// Compute the target address = code_entry + osr_offset
__ add(eax, ecx);
Generate_OSREntry(masm, eax);
}
} // namespace
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
using D = OnStackReplacementDescriptor;
static_assert(D::kParameterCount == 1);
OnStackReplacement(masm, OsrSourceTier::kInterpreter,
D::MaybeTargetCodeRegister());
}
void Builtins::Generate_BaselineOnStackReplacement(MacroAssembler* masm) {
using D = OnStackReplacementDescriptor;
static_assert(D::kParameterCount == 1);
__ mov(kContextRegister,
MemOperand(ebp, BaselineFrameConstants::kContextOffset));
OnStackReplacement(masm, OsrSourceTier::kBaseline,
D::MaybeTargetCodeRegister());
}
#if V8_ENABLE_WEBASSEMBLY
// Returns the offset beyond the last saved FP register.
int SaveWasmParams(MacroAssembler* masm) {
// Save all parameter registers (see wasm-linkage.h). They might be
// overwritten in the subsequent runtime call. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
static_assert(WasmLiftoffSetupFrameConstants::kNumberOfSavedGpParamRegs + 1 ==
arraysize(wasm::kGpParamRegisters),
"frame size mismatch");
for (Register reg : wasm::kGpParamRegisters) {
__ Push(reg);
}
static_assert(WasmLiftoffSetupFrameConstants::kNumberOfSavedFpParamRegs ==
arraysize(wasm::kFpParamRegisters),
"frame size mismatch");
__ AllocateStackSpace(kSimd128Size * arraysize(wasm::kFpParamRegisters));
int offset = 0;
for (DoubleRegister reg : wasm::kFpParamRegisters) {
__ movdqu(Operand(esp, offset), reg);
offset += kSimd128Size;
}
return offset;
}
// Consumes the offset beyond the last saved FP register (as returned by
// {SaveWasmParams}).
void RestoreWasmParams(MacroAssembler* masm, int offset) {
for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) {
offset -= kSimd128Size;
__ movdqu(reg, Operand(esp, offset));
}
DCHECK_EQ(0, offset);
__ add(esp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
for (Register reg : base::Reversed(wasm::kGpParamRegisters)) {
__ Pop(reg);
}
}
// When this builtin is called, the topmost stack entry is the calling pc.
// This is replaced with the following:
//
// [ calling pc ] <-- esp; popped by {ret}.
// [ feedback vector ]
// [ Wasm instance ]
// [ WASM frame marker ]
// [ saved ebp ] <-- ebp; this is where "calling pc" used to be.
void Builtins::Generate_WasmLiftoffFrameSetup(MacroAssembler* masm) {
constexpr Register func_index = wasm::kLiftoffFrameSetupFunctionReg;
// We have zero free registers at this point. Free up a temp. Its value
// could be tagged, but we're only storing it on the stack for a short
// while, and no GC or stack walk can happen during this time.
Register tmp = eax; // Arbitrarily chosen.
__ Push(tmp); // This is the "marker" slot.
{
Operand saved_ebp_slot = Operand(esp, kSystemPointerSize);
__ mov(tmp, saved_ebp_slot); // tmp now holds the "calling pc".
__ mov(saved_ebp_slot, ebp);
__ lea(ebp, Operand(esp, kSystemPointerSize));
}
__ Push(tmp); // This is the "instance" slot.
// Stack layout is now:
// [calling pc] <-- instance_slot <-- esp
// [saved tmp] <-- marker_slot
// [saved ebp]
Operand marker_slot = Operand(ebp, WasmFrameConstants::kFrameTypeOffset);
Operand instance_slot = Operand(ebp, WasmFrameConstants::kWasmInstanceOffset);
// Load the feedback vector.
__ mov(tmp, FieldOperand(kWasmInstanceRegister,
WasmInstanceObject::kFeedbackVectorsOffset));
__ mov(tmp, FieldOperand(tmp, func_index, times_tagged_size,
FixedArray::kHeaderSize));
Label allocate_vector;
__ JumpIfSmi(tmp, &allocate_vector);
// Vector exists. Finish setting up the stack frame.
__ Push(tmp); // Feedback vector.
__ mov(tmp, instance_slot); // Calling PC.
__ Push(tmp);
__ mov(instance_slot, kWasmInstanceRegister);
__ mov(tmp, marker_slot);
__ mov(marker_slot, Immediate(StackFrame::TypeToMarker(StackFrame::WASM)));
__ ret(0);
__ bind(&allocate_vector);
// Feedback vector doesn't exist yet. Call the runtime to allocate it.
// We temporarily change the frame type for this, because we need special
// handling by the stack walker in case of GC.
// For the runtime call, we create the following stack layout:
//
// [ reserved slot for NativeModule ] <-- arg[2]
// [ ("declared") function index ] <-- arg[1] for runtime func.
// [ Wasm instance ] <-- arg[0]
// [ ...spilled Wasm parameters... ]
// [ calling pc ] <-- already in place
// [ WASM_LIFTOFF_SETUP marker ]
// [ saved ebp ] <-- already in place
__ mov(tmp, marker_slot);
__ mov(marker_slot,
Immediate(StackFrame::TypeToMarker(StackFrame::WASM_LIFTOFF_SETUP)));
int offset = SaveWasmParams(masm);
// Arguments to the runtime function: instance, func_index.
__ Push(kWasmInstanceRegister);
__ SmiTag(func_index);
__ Push(func_index);
// Allocate a stack slot where the runtime function can spill a pointer
// to the NativeModule.
__ Push(esp);
__ Move(kContextRegister, Smi::zero());
__ CallRuntime(Runtime::kWasmAllocateFeedbackVector, 3);
tmp = func_index;
__ mov(tmp, kReturnRegister0);
RestoreWasmParams(masm, offset);
// Finish setting up the stack frame:
// [ calling pc ]
// (tmp reg) ---> [ feedback vector ]
// [ calling pc ] => [ Wasm instance ] <-- instance_slot
// [ WASM_LIFTOFF_SETUP marker ] [ WASM marker ] <-- marker_slot
// [ saved ebp ] [ saved ebp ]
__ mov(marker_slot, Immediate(StackFrame::TypeToMarker(StackFrame::WASM)));
__ Push(tmp); // Feedback vector.
__ mov(tmp, instance_slot); // Calling PC.
__ Push(tmp);
__ mov(instance_slot, kWasmInstanceRegister);
__ ret(0);
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
// The function index was put in edi by the jump table trampoline.
// Convert to Smi for the runtime call.
__ SmiTag(kWasmCompileLazyFuncIndexRegister);
{
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
FrameScope scope(masm, StackFrame::INTERNAL);
int offset = SaveWasmParams(masm);
// Push arguments for the runtime function.
__ Push(kWasmInstanceRegister);
__ Push(kWasmCompileLazyFuncIndexRegister);
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Move(kContextRegister, Smi::zero());
__ CallRuntime(Runtime::kWasmCompileLazy, 2);
// The runtime function returns the jump table slot offset as a Smi. Use
// that to compute the jump target in edi.
__ SmiUntag(kReturnRegister0);
__ mov(edi, kReturnRegister0);
RestoreWasmParams(masm, offset);
// After the instance register has been restored, we can add the jump table
// start to the jump table offset already stored in edi.
__ add(edi, MemOperand(kWasmInstanceRegister,
WasmInstanceObject::kJumpTableStartOffset -
kHeapObjectTag));
}
// Finally, jump to the jump table slot for the function.
__ jmp(edi);
}
void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) {
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
{
FrameScope scope(masm, StackFrame::WASM_DEBUG_BREAK);
// Save all parameter registers. They might hold live values, we restore
// them after the runtime call.
for (Register reg :
base::Reversed(WasmDebugBreakFrameConstants::kPushedGpRegs)) {
__ Push(reg);
}
constexpr int kFpStackSize =
kSimd128Size * WasmDebugBreakFrameConstants::kNumPushedFpRegisters;
__ AllocateStackSpace(kFpStackSize);
int offset = kFpStackSize;
for (DoubleRegister reg :
base::Reversed(WasmDebugBreakFrameConstants::kPushedFpRegs)) {
offset -= kSimd128Size;
__ movdqu(Operand(esp, offset), reg);
}
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Move(kContextRegister, Smi::zero());
__ CallRuntime(Runtime::kWasmDebugBreak, 0);
// Restore registers.
for (DoubleRegister reg : WasmDebugBreakFrameConstants::kPushedFpRegs) {
__ movdqu(reg, Operand(esp, offset));
offset += kSimd128Size;
}
__ add(esp, Immediate(kFpStackSize));
for (Register reg : WasmDebugBreakFrameConstants::kPushedGpRegs) {
__ Pop(reg);
}
}
__ ret(0);
}
void ResetStackSwitchFrameStackSlots(MacroAssembler* masm) {
Register zero = eax;
__ Move(zero, Smi::zero());
__ mov(MemOperand(ebp, StackSwitchFrameConstants::kInstanceOffset), zero);
__ mov(MemOperand(ebp, StackSwitchFrameConstants::kResultArrayOffset), zero);
}
void Builtins::Generate_JSToWasmWrapperAsm(MacroAssembler* masm) {
__ EnterFrame(StackFrame::JS_TO_WASM);
constexpr int kNumSpillSlots = StackSwitchFrameConstants::kNumSpillSlots;
__ sub(esp, Immediate(kNumSpillSlots * kSystemPointerSize));
ResetStackSwitchFrameStackSlots(masm);
Register wrapper_buffer =
WasmJSToWasmWrapperDescriptor::WrapperBufferRegister();
// Push the wrapper_buffer stack, it's needed later for the results.
__ mov(MemOperand(ebp, JSToWasmWrapperFrameConstants::kWrapperBufferOffset),
wrapper_buffer);
Register result_size = eax;
__ mov(
result_size,
MemOperand(
wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferStackReturnBufferSize));
__ shl(result_size, kSystemPointerSizeLog2);
__ sub(esp, result_size);
__ mov(
MemOperand(
wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferStackReturnBufferStart),
esp);
Register params_start = eax;
__ mov(params_start,
MemOperand(wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferParamStart));
Register params_end = esi;
__ mov(params_end,
MemOperand(wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferParamEnd));
Register call_target = edi;
__ mov(call_target,
MemOperand(wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferCallTarget));
Register last_stack_param = ecx;
// The first GP parameter is the instance, which we handle specially.
int stack_params_offset =
(arraysize(wasm::kGpParamRegisters) - 1) * kSystemPointerSize +
arraysize(wasm::kFpParamRegisters) * kDoubleSize;
int param_padding = stack_params_offset & kSystemPointerSize;
stack_params_offset += param_padding;
__ lea(last_stack_param, MemOperand(params_start, stack_params_offset));
Label loop_start;
__ bind(&loop_start);
Label finish_stack_params;
__ cmp(last_stack_param, params_end);
__ j(greater_equal, &finish_stack_params);
// Push parameter
__ sub(params_end, Immediate(kSystemPointerSize));
__ push(MemOperand(params_end, 0));
__ jmp(&loop_start);
__ bind(&finish_stack_params);
int next_offset = stack_params_offset;
for (size_t i = arraysize(wasm::kFpParamRegisters) - 1;
i < arraysize(wasm::kFpParamRegisters); --i) {
next_offset -= kDoubleSize;
__ Movsd(wasm::kFpParamRegisters[i], MemOperand(params_start, next_offset));
}
// Set the flag-in-wasm flag before loading the parameter registers. There are
// not so many registers, so we use one of the parameter registers before it
// is blocked.
Register thread_in_wasm_flag_addr = ecx;
__ mov(
thread_in_wasm_flag_addr,
MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset()));
__ mov(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(1));
next_offset -= param_padding;
for (size_t i = arraysize(wasm::kGpParamRegisters) - 1; i > 0; --i) {
next_offset -= kSystemPointerSize;
__ mov(wasm::kGpParamRegisters[i], MemOperand(params_start, next_offset));
}
DCHECK_EQ(next_offset, 0);
// Since there are so few registers, {params_start} overlaps with one of the
// parameter registers. Make sure it overlaps with the last one we fill.
DCHECK_EQ(params_start, wasm::kGpParamRegisters[1]);
__ mov(kWasmInstanceRegister,
MemOperand(ebp, JSToWasmWrapperFrameConstants::kInstanceParamOffset));
__ call(call_target);
__ mov(
thread_in_wasm_flag_addr,
MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset()));
__ mov(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(0));
thread_in_wasm_flag_addr = no_reg;
wrapper_buffer = esi;
__ mov(wrapper_buffer,
MemOperand(ebp, JSToWasmWrapperFrameConstants::kWrapperBufferOffset));
__ Movsd(MemOperand(
wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferFPReturnRegister1),
wasm::kFpReturnRegisters[0]);
__ Movsd(MemOperand(
wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferFPReturnRegister2),
wasm::kFpReturnRegisters[1]);
__ mov(MemOperand(
wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferGPReturnRegister1),
wasm::kGpReturnRegisters[0]);
__ mov(MemOperand(
wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferGPReturnRegister2),
wasm::kGpReturnRegisters[1]);
// Call the return value builtin with
// eax: wasm instance.
// ecx: the result JSArray for multi-return.
// edx: pointer to the wrapper buffer which contains all parameters.
__ mov(eax,
MemOperand(ebp, JSToWasmWrapperFrameConstants::kInstanceParamOffset));
__ mov(ecx, MemOperand(
ebp, JSToWasmWrapperFrameConstants::kResultArrayParamOffset));
__ mov(edx, wrapper_buffer);
__ Call(BUILTIN_CODE(masm->isolate(), JSToWasmHandleReturns),
RelocInfo::CODE_TARGET);
__ LeaveFrame(StackFrame::JS_TO_WASM);
__ ret(0);
}
void Builtins::Generate_WasmReturnPromiseOnSuspendAsm(MacroAssembler* masm) {
// TODO(v8:12191): Implement for this platform.
__ Trap();
}
void Builtins::Generate_WasmToJsWrapperAsm(MacroAssembler* masm) {
// Pop the return address into a scratch register and push it later again. The
// return address has to be on top of the stack after all registers have been
// pushed, so that the return instruction can find it.
Register scratch = edi;
__ pop(scratch);
int required_stack_space = arraysize(wasm::kFpParamRegisters) * kDoubleSize;
__ sub(esp, Immediate(required_stack_space));
for (int i = 0; i < static_cast<int>(arraysize(wasm::kFpParamRegisters));
++i) {
__ Movsd(MemOperand(esp, i * kDoubleSize), wasm::kFpParamRegisters[i]);
}
// eax is pushed for alignment, so that the pushed register parameters and
// stack parameters look the same as the layout produced by the js-to-wasm
// wrapper for out-going parameters. Having the same layout allows to share
// code in Torque, especially the `LocationAllocator`. eax has been picked
// arbitrarily.
__ push(eax);
// Push the GP registers in reverse order so that they are on the stack like
// in an array, with the first item being at the lowest address.
for (size_t i = arraysize(wasm::kGpParamRegisters) - 1; i > 0; --i) {
__ push(wasm::kGpParamRegisters[i]);
}
// Decrement the stack to allocate a stack slot. The signature gets written
// into the slot in Torque.
__ push(eax);
// Push the return address again.
__ push(scratch);
__ TailCallBuiltin(Builtin::kWasmToJsWrapperCSA);
}
void Builtins::Generate_WasmSuspend(MacroAssembler* masm) {
// TODO(v8:12191): Implement for this platform.
__ Trap();
}
void Builtins::Generate_WasmResume(MacroAssembler* masm) {
// TODO(v8:12191): Implement for this platform.
__ Trap();
}
void Builtins::Generate_WasmReject(MacroAssembler* masm) {
// TODO(v8:12191): Implement for this platform.
__ Trap();
}
void Builtins::Generate_WasmOnStackReplace(MacroAssembler* masm) {
// Only needed on x64.
__ Trap();
}
#endif // V8_ENABLE_WEBASSEMBLY
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
ArgvMode argv_mode, bool builtin_exit_frame,
bool switch_to_central_stack) {
CHECK(result_size == 1 || result_size == 2);
using ER = ExternalReference;
// eax: number of arguments including receiver
// edx: pointer to C function
// ebp: frame pointer (restored after C call)
// esp: stack pointer (restored after C call)
// esi: current context (C callee-saved)
// edi: JS function of the caller (C callee-saved)
//
// If argv_mode == ArgvMode::kRegister:
// ecx: pointer to the first argument
static_assert(eax == kRuntimeCallArgCountRegister);
static_assert(ecx == kRuntimeCallArgvRegister);
static_assert(edx == kRuntimeCallFunctionRegister);
static_assert(esi == kContextRegister);
static_assert(edi == kJSFunctionRegister);
DCHECK(!AreAliased(kRuntimeCallArgCountRegister, kRuntimeCallArgvRegister,
kRuntimeCallFunctionRegister, kContextRegister,
kJSFunctionRegister, kRootRegister));
static constexpr int kReservedStackSlots = 3;
__ EnterExitFrame(
kReservedStackSlots,
builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT, edi);
// Set up argv in a callee-saved register. It is reused below so it must be
// retained across the C call.
static constexpr Register kArgvRegister = edi;
if (argv_mode == ArgvMode::kRegister) {
__ mov(kArgvRegister, ecx);
} else {
int offset =
StandardFrameConstants::kFixedFrameSizeAboveFp - kReceiverOnStackSize;
__ lea(kArgvRegister, Operand(ebp, eax, times_system_pointer_size, offset));
}
// edx: pointer to C function
// ebp: frame pointer (restored after C call)
// esp: stack pointer (restored after C call)
// eax: number of arguments including receiver
// edi: pointer to the first argument (C callee-saved)
// Result returned in eax, or eax+edx if result size is 2.
// Check stack alignment.
if (v8_flags.debug_code) {
__ CheckStackAlignment();
}
// Call C function.
static_assert(kReservedStackSlots == 3);
__ mov(Operand(esp, 0 * kSystemPointerSize), eax); // argc.
__ mov(Operand(esp, 1 * kSystemPointerSize), kArgvRegister); // argv.
__ Move(ecx, Immediate(ER::isolate_address(masm->isolate())));
__ mov(Operand(esp, 2 * kSystemPointerSize), ecx);
__ call(kRuntimeCallFunctionRegister);
// Result is in eax or edx:eax - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(eax, RootIndex::kException);
__ j(equal, &exception_returned);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (v8_flags.debug_code) {
__ push(edx);
__ LoadRoot(edx, RootIndex::kTheHoleValue);
Label okay;
ER pending_exception_address =
ER::Create(IsolateAddressId::kPendingExceptionAddress, masm->isolate());
__ cmp(edx, __ ExternalReferenceAsOperand(pending_exception_address, ecx));
// Cannot use check here as it attempts to generate call into runtime.
__ j(equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
__ pop(edx);
}
__ LeaveExitFrame(esi);
if (argv_mode == ArgvMode::kStack) {
// Drop arguments and the receiver from the caller stack.
DCHECK(!AreAliased(esi, kArgvRegister));
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(kArgvRegister, kReceiverOnStackSize));
__ PushReturnAddressFrom(ecx);
}
__ ret(0);
// Handling of exception.
__ bind(&exception_returned);
ER pending_handler_context_address = ER::Create(
IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
ER pending_handler_entrypoint_address = ER::Create(
IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
ER pending_handler_fp_address =
ER::Create(IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
ER pending_handler_sp_address =
ER::Create(IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
// Ask the runtime for help to determine the handler. This will set eax to
// contain the current pending exception, don't clobber it.
ER find_handler = ER::Create(Runtime::kUnwindAndFindExceptionHandler);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, eax);
__ mov(Operand(esp, 0 * kSystemPointerSize), Immediate(0)); // argc.
__ mov(Operand(esp, 1 * kSystemPointerSize), Immediate(0)); // argv.
__ Move(esi, Immediate(ER::isolate_address(masm->isolate())));
__ mov(Operand(esp, 2 * kSystemPointerSize), esi);
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ mov(esp, __ ExternalReferenceAsOperand(pending_handler_sp_address, esi));
__ mov(ebp, __ ExternalReferenceAsOperand(pending_handler_fp_address, esi));
__ mov(esi,
__ ExternalReferenceAsOperand(pending_handler_context_address, esi));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (esi == 0) for non-JS frames.
Label skip;
__ test(esi, esi);
__ j(zero, &skip, Label::kNear);
__ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
__ bind(&skip);
// Clear c_entry_fp, like we do in `LeaveExitFrame`.
ER c_entry_fp_address =
ER::Create(IsolateAddressId::kCEntryFPAddress, masm->isolate());
__ mov(__ ExternalReferenceAsOperand(c_entry_fp_address, esi), Immediate(0));
// Compute the handler entry address and jump to it.
__ mov(edi, __ ExternalReferenceAsOperand(pending_handler_entrypoint_address,
edi));
__ jmp(edi);
}
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
Label check_negative, process_64_bits, done;
// Account for return address and saved regs.
const int kArgumentOffset = 4 * kSystemPointerSize;
MemOperand mantissa_operand(MemOperand(esp, kArgumentOffset));
MemOperand exponent_operand(
MemOperand(esp, kArgumentOffset + kDoubleSize / 2));
// The result is returned on the stack.
MemOperand return_operand = mantissa_operand;
Register scratch1 = ebx;
// Since we must use ecx for shifts below, use some other register (eax)
// to calculate the result.
Register result_reg = eax;
// Save ecx if it isn't the return register and therefore volatile, or if it
// is the return register, then save the temp register we use in its stead for
// the result.
Register save_reg = eax;
__ push(ecx);
__ push(scratch1);
__ push(save_reg);
__ mov(scratch1, mantissa_operand);
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatureScope scope(masm, SSE3);
// Load x87 register with heap number.
__ fld_d(mantissa_operand);
}
__ mov(ecx, exponent_operand);
__ and_(ecx, HeapNumber::kExponentMask);
__ shr(ecx, HeapNumber::kExponentShift);
__ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
__ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
__ j(below, &process_64_bits);
// Result is entirely in lower 32-bits of mantissa
int delta =
HeapNumber::kExponentBias + base::Double::kPhysicalSignificandSize;
if (CpuFeatures::IsSupported(SSE3)) {
__ fstp(0);
}
__ sub(ecx, Immediate(delta));
__ xor_(result_reg, result_reg);
__ cmp(ecx, Immediate(31));
__ j(above, &done);
__ shl_cl(scratch1);
__ jmp(&check_negative);
__ bind(&process_64_bits);
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatureScope scope(masm, SSE3);
// Reserve space for 64 bit answer.
__ AllocateStackSpace(kDoubleSize); // Nolint.
// Do conversion, which cannot fail because we checked the exponent.
__ fisttp_d(Operand(esp, 0));
__ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
__ add(esp, Immediate(kDoubleSize));
__ jmp(&done);
} else {
// Result must be extracted from shifted 32-bit mantissa
__ sub(ecx, Immediate(delta));
__ neg(ecx);
__ mov(result_reg, exponent_operand);
__ and_(
result_reg,
Immediate(static_cast<uint32_t>(base::Double::kSignificandMask >> 32)));
__ add(result_reg,
Immediate(static_cast<uint32_t>(base::Double::kHiddenBit >> 32)));
__ shrd_cl(scratch1, result_reg);
__ shr_cl(result_reg);
__ test(ecx, Immediate(32));
__ cmov(not_equal, scratch1, result_reg);
}
// If the double was negative, negate the integer result.
__ bind(&check_negative);
__ mov(result_reg, scratch1);
__ neg(result_reg);
__ cmp(exponent_operand, Immediate(0));
__ cmov(greater, result_reg, scratch1);
// Restore registers
__ bind(&done);
__ mov(return_operand, result_reg);
__ pop(save_reg);
__ pop(scratch1);
__ pop(ecx);
__ ret(0);
}
void Builtins::Generate_CallApiCallbackImpl(MacroAssembler* masm,
CallApiCallbackMode mode) {
// ----------- S t a t e -------------
// CallApiCallbackMode::kGeneric mode:
// -- ecx : arguments count (not including the receiver)
// -- edx : call handler info
// -- edi : holder
// CallApiCallbackMode::kOptimizedNoProfiling/kOptimized modes:
// -- eax : api function address
// -- ecx : arguments count (not including the receiver)
// -- edx : call data
// -- edi : holder
// Both modes:
// -- esi : context
// -- esp[0] : return address
// -- esp[8] : argument 0 (receiver)
// -- esp[16] : argument 1
// -- ...
// -- esp[argc * 8] : argument (argc - 1)
// -- esp[(argc + 1) * 8] : argument argc
// -----------------------------------
Register api_function_address = no_reg;
Register argc = no_reg;
Register call_data = no_reg;
Register callback = no_reg;
Register holder = no_reg;
switch (mode) {
case CallApiCallbackMode::kGeneric:
api_function_address = eax;
argc = CallApiCallbackGenericDescriptor::ActualArgumentsCountRegister();
callback = CallApiCallbackGenericDescriptor::CallHandlerInfoRegister();
holder = CallApiCallbackGenericDescriptor::HolderRegister();
break;
case CallApiCallbackMode::kOptimizedNoProfiling:
case CallApiCallbackMode::kOptimized:
api_function_address =
CallApiCallbackOptimizedDescriptor::ApiFunctionAddressRegister();
argc = CallApiCallbackOptimizedDescriptor::ActualArgumentsCountRegister();
call_data = CallApiCallbackOptimizedDescriptor::CallDataRegister();
holder = CallApiCallbackOptimizedDescriptor::HolderRegister();
break;
}
DCHECK(!AreAliased(api_function_address, argc, call_data, callback, holder));
using FCA = FunctionCallbackArguments;
static_assert(FCA::kArgsLength == 6);
static_assert(FCA::kNewTargetIndex == 5);
static_assert(FCA::kDataIndex == 4);
static_assert(FCA::kReturnValueIndex == 3);
static_assert(FCA::kUnusedIndex == 2);
static_assert(FCA::kIsolateIndex == 1);
static_assert(FCA::kHolderIndex == 0);
// Set up FunctionCallbackInfo's implicit_args on the stack as follows:
//
// Current state:
// esp[0]: return address
//
// Target state:
// esp[0 * kSystemPointerSize]: return address
// esp[1 * kSystemPointerSize]: kHolder <= implicit_args_
// esp[2 * kSystemPointerSize]: kIsolate
// esp[3 * kSystemPointerSize]: undefined (padding, unused)
// esp[4 * kSystemPointerSize]: undefined (kReturnValue)
// esp[5 * kSystemPointerSize]: kData
// esp[6 * kSystemPointerSize]: undefined (kNewTarget)
// Existing state:
// esp[7 * kSystemPointerSize]: <= FCA:::values_
// Park argc in xmm0.
__ movd(xmm0, argc);
__ PopReturnAddressTo(argc);
__ PushRoot(RootIndex::kUndefinedValue); // kNewTarget
switch (mode) {
case CallApiCallbackMode::kGeneric:
__ push(FieldOperand(callback, CallHandlerInfo::kDataOffset));
break;
case CallApiCallbackMode::kOptimizedNoProfiling:
case CallApiCallbackMode::kOptimized:
__ Push(call_data);
break;
}
__ PushRoot(RootIndex::kUndefinedValue); // kReturnValue
__ Push(Smi::zero()); // kUnused
__ Push(Immediate(ExternalReference::isolate_address(masm->isolate())));
__ Push(holder);
// Keep a pointer to kHolder (= implicit_args) in a {holder} register.
// We use it below to set up the FunctionCallbackInfo object.
__ mov(holder, esp);
// The API function takes v8::FunctionCallbackInfo reference, allocate it
// in non-GCed space of the exit frame.
static constexpr int kApiArgc = 1;
static constexpr int kApiArg0Offset = 0 * kSystemPointerSize;
static constexpr int kApiArgsSize = kApiArgc * kSystemPointerSize;
// Allocate v8::FunctionCallbackInfo object and a number of bytes to drop
// from the stack after the callback in non-GCed space of the exit frame.
static constexpr int kApiStackSpace = 4;
static_assert((kApiStackSpace - 1) * kSystemPointerSize == FCA::kSize);
const int exit_frame_params_count =
mode == CallApiCallbackMode::kGeneric
? ApiCallbackExitFrameConstants::kAdditionalParametersCount
: 0;
if (mode == CallApiCallbackMode::kGeneric) {
ASM_CODE_COMMENT_STRING(masm, "Push API_CALLBACK_EXIT frame arguments");
// Reload argc from xmm0.
__ movd(api_function_address, xmm0);
// No padding is required.
static_assert(ApiCallbackExitFrameConstants::kOptionalPaddingSize == 0);
// Context parameter.
static_assert(ApiCallbackExitFrameConstants::kContextOffset ==
4 * kSystemPointerSize);
__ Push(kContextRegister);
// Argc parameter as a Smi.
static_assert(ApiCallbackExitFrameConstants::kArgcOffset ==
3 * kSystemPointerSize);
__ SmiTag(api_function_address);
__ Push(api_function_address);
// Target parameter.
static_assert(ApiCallbackExitFrameConstants::kTargetOffset ==
2 * kSystemPointerSize);
__ push(FieldOperand(callback, CallHandlerInfo::kOwnerTemplateOffset));
__ PushReturnAddressFrom(argc);
__ mov(api_function_address,
FieldOperand(callback,
CallHandlerInfo::kMaybeRedirectedCallbackOffset));
__ EnterExitFrame(kApiArgc + kApiStackSpace, StackFrame::API_CALLBACK_EXIT,
api_function_address);
} else {
__ PushReturnAddressFrom(argc);
__ EnterExitFrame(kApiArgc + kApiStackSpace, StackFrame::EXIT,
api_function_address);
}
if (v8_flags.debug_code) {
__ mov(esi, Immediate(base::bit_cast<int32_t>(kZapValue)));
}
// Reload argc from xmm0.
__ movd(argc, xmm0);
{
ASM_CODE_COMMENT_STRING(masm, "Initialize FunctionCallbackInfo");
// FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
__ mov(ExitFrameStackSlotOperand(kApiArgsSize + FCA::kImplicitArgsOffset),
holder);
// FunctionCallbackInfo::values_ (points at the first varargs argument
// passed on the stack).
__ lea(holder,
Operand(holder, FCA::kArgsLengthWithReceiver * kSystemPointerSize));
__ mov(ExitFrameStackSlotOperand(kApiArgsSize + FCA::kValuesOffset),
holder);
// FunctionCallbackInfo::length_.
__ mov(ExitFrameStackSlotOperand(kApiArgsSize + FCA::kLengthOffset), argc);
}
Register scratch = ReassignRegister(holder);
// We also store the number of bytes to drop from the stack after returning
// from the API function here.
constexpr int kBytesToDropOffset = FCA::kLengthOffset + kSystemPointerSize;
static_assert(kBytesToDropOffset ==
(kApiStackSpace - 1) * kSystemPointerSize);
__ lea(scratch,
Operand(argc, times_system_pointer_size,
(FCA::kArgsLengthWithReceiver + exit_frame_params_count) *
kSystemPointerSize));
__ mov(ExitFrameStackSlotOperand(kApiArgsSize + kBytesToDropOffset), scratch);
__ RecordComment("v8::FunctionCallback's argument.");
__ lea(scratch,
ExitFrameStackSlotOperand(kApiArgsSize + FCA::kImplicitArgsOffset));
__ mov(ExitFrameStackSlotOperand(kApiArg0Offset), scratch);
ExternalReference thunk_ref =
ExternalReference::invoke_function_callback(mode);
// Pass api function address to thunk wrapper in case profiler or side-effect
// checking is enabled.
Register thunk_arg = api_function_address;
Operand return_value_operand = ExitFrameCallerStackSlotOperand(
FCA::kReturnValueIndex + exit_frame_params_count);
static constexpr int kUseStackSpaceOperand = 0;
Operand stack_space_operand =
ExitFrameStackSlotOperand(kApiArgsSize + kBytesToDropOffset);
const bool with_profiling =
mode != CallApiCallbackMode::kOptimizedNoProfiling;
CallApiFunctionAndReturn(masm, with_profiling, api_function_address,
thunk_ref, thunk_arg, kUseStackSpaceOperand,
&stack_space_operand, return_value_operand);
}
void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- esi : context
// -- edx : receiver
// -- ecx : holder
// -- eax : accessor info
// -- esp[0] : return address
// -----------------------------------
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = edi;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
using PCI = PropertyCallbackInfo<v8::Value>;
using PCA = PropertyCallbackArguments;
static_assert(PCA::kShouldThrowOnErrorIndex == 0);
static_assert(PCA::kHolderIndex == 1);
static_assert(PCA::kIsolateIndex == 2);
static_assert(PCA::kUnusedIndex == 3);
static_assert(PCA::kReturnValueIndex == 4);
static_assert(PCA::kDataIndex == 5);
static_assert(PCA::kThisIndex == 6);
static_assert(PCA::kArgsLength == 7);
// Set up PropertyCallbackInfo's args_ on the stack as follows:
//
// Current state:
// esp[0]: return address
//
// Target state:
// esp[0 * kSystemPointerSize]: return address
// esp[1 * kSystemPointerSize]: name
// esp[2 * kSystemPointerSize]: kShouldThrowOnErrorIndex <= PCI:args_
// esp[3 * kSystemPointerSize]: kHolderIndex
// esp[4 * kSystemPointerSize]: kIsolateIndex
// esp[5 * kSystemPointerSize]: kUnusedIndex
// esp[6 * kSystemPointerSize]: kReturnValueIndex
// esp[7 * kSystemPointerSize]: kDataIndex
// esp[8 * kSystemPointerSize]: kThisIndex / receiver
__ PopReturnAddressTo(scratch);
__ push(receiver);
__ push(FieldOperand(callback, AccessorInfo::kDataOffset));
__ PushRoot(RootIndex::kUndefinedValue); // ReturnValue
__ Push(Smi::zero()); // unused
__ Push(Immediate(ExternalReference::isolate_address(masm->isolate())));
__ push(holder);
__ Push(Smi::zero()); // should_throw_on_error -> false
// Initialize a pointer to PropertyCallbackInfo::args_ array (= &ShouldThrow).
Register args_array = ReassignRegister(holder);
__ mov(args_array, esp);
__ push(FieldOperand(callback, AccessorInfo::kNameOffset));
__ PushReturnAddressFrom(scratch);
Register api_function_address = ReassignRegister(receiver);
__ RecordComment("Load function_address");
__ mov(api_function_address,
FieldOperand(callback, AccessorInfo::kMaybeRedirectedGetterOffset));
// v8::PropertyCallbackInfo::args_ array and name handle.
static constexpr int kNameOnStackSize = 1;
static constexpr int kStackUnwindSpace = PCA::kArgsLength + kNameOnStackSize;
// The API function takes a name handle and v8::PropertyCallbackInfo
// reference, allocate them in non-GCed space of the exit frame.
static constexpr int kApiArgc = 2;
static constexpr int kApiArg0Offset = 0 * kSystemPointerSize;
static constexpr int kApiArg1Offset = 1 * kSystemPointerSize;
static constexpr int kApiArgsSize = kApiArgc * kSystemPointerSize;
// Allocate v8::PropertyCallbackInfo object in non-GCed space of the exit
// frame.
static constexpr int kApiStackSpace = 1;
static_assert(kApiStackSpace * kSystemPointerSize == sizeof(PCI));
__ EnterExitFrame(kApiArgc + kApiStackSpace, StackFrame::EXIT,
api_function_address);
if (v8_flags.debug_code) {
__ mov(esi, Immediate(base::bit_cast<int32_t>(kZapValue)));
}
__ RecordComment("Create v8::PropertyCallbackInfo object on the stack.");
// Initialize its args_ field.
Operand info_object = ExitFrameStackSlotOperand(kApiArgsSize);
__ mov(info_object, args_array);
__ RecordComment("Handle<Name>");
__ sub(args_array, Immediate(kSystemPointerSize));
__ mov(ExitFrameStackSlotOperand(kApiArg0Offset), args_array);
args_array = no_reg;
__ RecordComment("&v8::PropertyCallbackInfo::args_");
__ lea(scratch, info_object);
__ mov(ExitFrameStackSlotOperand(kApiArg1Offset), scratch);
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback();
// Pass AccessorInfo to thunk wrapper in case profiler or side-effect
// checking is enabled.
Register thunk_arg = callback;
Operand return_value_operand = ExitFrameCallerStackSlotOperand(
PCA::kReturnValueIndex + kNameOnStackSize);
Operand* const kUseStackSpaceConstant = nullptr;
const bool with_profiling = true;
CallApiFunctionAndReturn(masm, with_profiling, api_function_address,
thunk_ref, thunk_arg, kStackUnwindSpace,
kUseStackSpaceConstant, return_value_operand);
}
void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
__ int3(); // Unused on this architecture.
}
namespace {
enum Direction { FORWARD, BACKWARD };
enum Alignment { MOVE_ALIGNED, MOVE_UNALIGNED };
// Expects registers:
// esi - source, aligned if alignment == ALIGNED
// edi - destination, always aligned
// ecx - count (copy size in bytes)
// edx - loop count (number of 64 byte chunks)
void MemMoveEmitMainLoop(MacroAssembler* masm, Label* move_last_15,
Direction direction, Alignment alignment) {
ASM_CODE_COMMENT(masm);
Register src = esi;
Register dst = edi;
Register count = ecx;
Register loop_count = edx;
Label loop, move_last_31, move_last_63;
__ cmp(loop_count, 0);
__ j(equal, &move_last_63);
__ bind(&loop);
// Main loop. Copy in 64 byte chunks.
if (direction == BACKWARD) __ sub(src, Immediate(0x40));
__ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0x00));
__ movdq(alignment == MOVE_ALIGNED, xmm1, Operand(src, 0x10));
__ movdq(alignment == MOVE_ALIGNED, xmm2, Operand(src, 0x20));
__ movdq(alignment == MOVE_ALIGNED, xmm3, Operand(src, 0x30));
if (direction == FORWARD) __ add(src, Immediate(0x40));
if (direction == BACKWARD) __ sub(dst, Immediate(0x40));
__ movdqa(Operand(dst, 0x00), xmm0);
__ movdqa(Operand(dst, 0x10), xmm1);
__ movdqa(Operand(dst, 0x20), xmm2);
__ movdqa(Operand(dst, 0x30), xmm3);
if (direction == FORWARD) __ add(dst, Immediate(0x40));
__ dec(loop_count);
__ j(not_zero, &loop);
// At most 63 bytes left to copy.
__ bind(&move_last_63);
__ test(count, Immediate(0x20));
__ j(zero, &move_last_31);
if (direction == BACKWARD) __ sub(src, Immediate(0x20));
__ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0x00));
__ movdq(alignment == MOVE_ALIGNED, xmm1, Operand(src, 0x10));
if (direction == FORWARD) __ add(src, Immediate(0x20));
if (direction == BACKWARD) __ sub(dst, Immediate(0x20));
__ movdqa(Operand(dst, 0x00), xmm0);
__ movdqa(Operand(dst, 0x10), xmm1);
if (direction == FORWARD) __ add(dst, Immediate(0x20));
// At most 31 bytes left to copy.
__ bind(&move_last_31);
__ test(count, Immediate(0x10));
__ j(zero, move_last_15);
if (direction == BACKWARD) __ sub(src, Immediate(0x10));
__ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0));
if (direction == FORWARD) __ add(src, Immediate(0x10));
if (direction == BACKWARD) __ sub(dst, Immediate(0x10));
__ movdqa(Operand(dst, 0), xmm0);
if (direction == FORWARD) __ add(dst, Immediate(0x10));
}
void MemMoveEmitPopAndReturn(MacroAssembler* masm) {
__ pop(esi);
__ pop(edi);
__ ret(0);
}
} // namespace
void Builtins::Generate_MemMove(MacroAssembler* masm) {
// Generated code is put into a fixed, unmovable buffer, and not into
// the V8 heap. We can't, and don't, refer to any relocatable addresses
// (e.g. the JavaScript nan-object).
// 32-bit C declaration function calls pass arguments on stack.
// Stack layout:
// esp[12]: Third argument, size.
// esp[8]: Second argument, source pointer.
// esp[4]: First argument, destination pointer.
// esp[0]: return address
const int kDestinationOffset = 1 * kSystemPointerSize;
const int kSourceOffset = 2 * kSystemPointerSize;
const int kSizeOffset = 3 * kSystemPointerSize;
// When copying up to this many bytes, use special "small" handlers.
const size_t kSmallCopySize = 8;
// When copying up to this many bytes, use special "medium" handlers.
const size_t kMediumCopySize = 63;
// When non-overlapping region of src and dst is less than this,
// use a more careful implementation (slightly slower).
const size_t kMinMoveDistance = 16;
// Note that these values are dictated by the implementation below,
// do not just change them and hope things will work!
int stack_offset = 0; // Update if we change the stack height.
Label backward, backward_much_overlap;
Label forward_much_overlap, small_size, medium_size, pop_and_return;
__ push(edi);
__ push(esi);
stack_offset += 2 * kSystemPointerSize;
Register dst = edi;
Register src = esi;
Register count = ecx;
Register loop_count = edx;
__ mov(dst, Operand(esp, stack_offset + kDestinationOffset));
__ mov(src, Operand(esp, stack_offset + kSourceOffset));
__ mov(count, Operand(esp, stack_offset + kSizeOffset));
__ cmp(dst, src);
__ j(equal, &pop_and_return);
__ prefetch(Operand(src, 0), 1);
__ cmp(count, kSmallCopySize);
__ j(below_equal, &small_size);
__ cmp(count, kMediumCopySize);
__ j(below_equal, &medium_size);
__ cmp(dst, src);
__ j(above, &backward);
{
// |dst| is a lower address than |src|. Copy front-to-back.
Label unaligned_source, move_last_15, skip_last_move;
__ mov(eax, src);
__ sub(eax, dst);
__ cmp(eax, kMinMoveDistance);
__ j(below, &forward_much_overlap);
// Copy first 16 bytes.
__ movdqu(xmm0, Operand(src, 0));
__ movdqu(Operand(dst, 0), xmm0);
// Determine distance to alignment: 16 - (dst & 0xF).
__ mov(edx, dst);
__ and_(edx, 0xF);
__ neg(edx);
__ add(edx, Immediate(16));
__ add(dst, edx);
__ add(src, edx);
__ sub(count, edx);
// dst is now aligned. Main copy loop.
__ mov(loop_count, count);
__ shr(loop_count, 6);
// Check if src is also aligned.
__ test(src, Immediate(0xF));
__ j(not_zero, &unaligned_source);
// Copy loop for aligned source and destination.
MemMoveEmitMainLoop(masm, &move_last_15, FORWARD, MOVE_ALIGNED);
// At most 15 bytes to copy. Copy 16 bytes at end of string.
__ bind(&move_last_15);
__ and_(count, 0xF);
__ j(zero, &skip_last_move, Label::kNear);
__ movdqu(xmm0, Operand(src, count, times_1, -0x10));
__ movdqu(Operand(dst, count, times_1, -0x10), xmm0);
__ bind(&skip_last_move);
MemMoveEmitPopAndReturn(masm);
// Copy loop for unaligned source and aligned destination.
__ bind(&unaligned_source);
MemMoveEmitMainLoop(masm, &move_last_15, FORWARD, MOVE_UNALIGNED);
__ jmp(&move_last_15);
// Less than kMinMoveDistance offset between dst and src.
Label loop_until_aligned, last_15_much_overlap;
__ bind(&loop_until_aligned);
__ mov_b(eax, Operand(src, 0));
__ inc(src);
__ mov_b(Operand(dst, 0), eax);
__ inc(dst);
__ dec(count);
__ bind(&forward_much_overlap); // Entry point into this block.
__ test(dst, Immediate(0xF));
__ j(not_zero, &loop_until_aligned);
// dst is now aligned, src can't be. Main copy loop.
__ mov(loop_count, count);
__ shr(loop_count, 6);
MemMoveEmitMainLoop(masm, &last_15_much_overlap, FORWARD, MOVE_UNALIGNED);
__ bind(&last_15_much_overlap);
__ and_(count, 0xF);
__ j(zero, &pop_and_return);
__ cmp(count, kSmallCopySize);
__ j(below_equal, &small_size);
__ jmp(&medium_size);
}
{
// |dst| is a higher address than |src|. Copy backwards.
Label unaligned_source, move_first_15, skip_last_move;
__ bind(&backward);
// |dst| and |src| always point to the end of what's left to copy.
__ add(dst, count);
__ add(src, count);
__ mov(eax, dst);
__ sub(eax, src);
__ cmp(eax, kMinMoveDistance);
__ j(below, &backward_much_overlap);
// Copy last 16 bytes.
__ movdqu(xmm0, Operand(src, -0x10));
__ movdqu(Operand(dst, -0x10), xmm0);
// Find distance to alignment: dst & 0xF
__ mov(edx, dst);
__ and_(edx, 0xF);
__ sub(dst, edx);
__ sub(src, edx);
__ sub(count, edx);
// dst is now aligned. Main copy loop.
__ mov(loop_count, count);
__ shr(loop_count, 6);
// Check if src is also aligned.
__ test(src, Immediate(0xF));
__ j(not_zero, &unaligned_source);
// Copy loop for aligned source and destination.
MemMoveEmitMainLoop(masm, &move_first_15, BACKWARD, MOVE_ALIGNED);
// At most 15 bytes to copy. Copy 16 bytes at beginning of string.
__ bind(&move_first_15);
__ and_(count, 0xF);
__ j(zero, &skip_last_move, Label::kNear);
__ sub(src, count);
__ sub(dst, count);
__ movdqu(xmm0, Operand(src, 0));
__ movdqu(Operand(dst, 0), xmm0);
__ bind(&skip_last_move);
MemMoveEmitPopAndReturn(masm);
// Copy loop for unaligned source and aligned destination.
__ bind(&unaligned_source);
MemMoveEmitMainLoop(masm, &move_first_15, BACKWARD, MOVE_UNALIGNED);
__ jmp(&move_first_15);
// Less than kMinMoveDistance offset between dst and src.
Label loop_until_aligned, first_15_much_overlap;
__ bind(&loop_until_aligned);
__ dec(src);
__ dec(dst);
__ mov_b(eax, Operand(src, 0));
__ mov_b(Operand(dst, 0), eax);
__ dec(count);
__ bind(&backward_much_overlap); // Entry point into this block.
__ test(dst, Immediate(0xF));
__ j(not_zero, &loop_until_aligned);
// dst is now aligned, src can't be. Main copy loop.
__ mov(loop_count, count);
__ shr(loop_count, 6);
MemMoveEmitMainLoop(masm, &first_15_much_overlap, BACKWARD, MOVE_UNALIGNED);
__ bind(&first_15_much_overlap);
__ and_(count, 0xF);
__ j(zero, &pop_and_return);
// Small/medium handlers expect dst/src to point to the beginning.
__ sub(dst, count);
__ sub(src, count);
__ cmp(count, kSmallCopySize);
__ j(below_equal, &small_size);
__ jmp(&medium_size);
}
{
// Special handlers for 9 <= copy_size < 64. No assumptions about
// alignment or move distance, so all reads must be unaligned and
// must happen before any writes.
Label f9_16, f17_32, f33_48, f49_63;
__ bind(&f9_16);
__ movsd(xmm0, Operand(src, 0));
__ movsd(xmm1, Operand(src, count, times_1, -8));
__ movsd(Operand(dst, 0), xmm0);
__ movsd(Operand(dst, count, times_1, -8), xmm1);
MemMoveEmitPopAndReturn(masm);
__ bind(&f17_32);
__ movdqu(xmm0, Operand(src, 0));
__ movdqu(xmm1, Operand(src, count, times_1, -0x10));
__ movdqu(Operand(dst, 0x00), xmm0);
__ movdqu(Operand(dst, count, times_1, -0x10), xmm1);
MemMoveEmitPopAndReturn(masm);
__ bind(&f33_48);
__ movdqu(xmm0, Operand(src, 0x00));
__ movdqu(xmm1, Operand(src, 0x10));
__ movdqu(xmm2, Operand(src, count, times_1, -0x10));
__ movdqu(Operand(dst, 0x00), xmm0);
__ movdqu(Operand(dst, 0x10), xmm1);
__ movdqu(Operand(dst, count, times_1, -0x10), xmm2);
MemMoveEmitPopAndReturn(masm);
__ bind(&f49_63);
__ movdqu(xmm0, Operand(src, 0x00));
__ movdqu(xmm1, Operand(src, 0x10));
__ movdqu(xmm2, Operand(src, 0x20));
__ movdqu(xmm3, Operand(src, count, times_1, -0x10));
__ movdqu(Operand(dst, 0x00), xmm0);
__ movdqu(Operand(dst, 0x10), xmm1);
__ movdqu(Operand(dst, 0x20), xmm2);
__ movdqu(Operand(dst, count, times_1, -0x10), xmm3);
MemMoveEmitPopAndReturn(masm);
__ bind(&medium_size); // Entry point into this block.
__ mov(eax, count);
__ dec(eax);
__ shr(eax, 4);
if (v8_flags.debug_code) {
Label ok;
__ cmp(eax, 3);
__ j(below_equal, &ok);
__ int3();
__ bind(&ok);
}
// Dispatch to handlers.
Label eax_is_2_or_3;
__ cmp(eax, 1);
__ j(greater, &eax_is_2_or_3);
__ j(less, &f9_16); // eax == 0.
__ jmp(&f17_32); // eax == 1.
__ bind(&eax_is_2_or_3);
__ cmp(eax, 3);
__ j(less, &f33_48); // eax == 2.
__ jmp(&f49_63); // eax == 3.
}
{
// Specialized copiers for copy_size <= 8 bytes.
Label f0, f1, f2, f3, f4, f5_8;
__ bind(&f0);
MemMoveEmitPopAndReturn(masm);
__ bind(&f1);
__ mov_b(eax, Operand(src, 0));
__ mov_b(Operand(dst, 0), eax);
MemMoveEmitPopAndReturn(masm);
__ bind(&f2);
__ mov_w(eax, Operand(src, 0));
__ mov_w(Operand(dst, 0), eax);
MemMoveEmitPopAndReturn(masm);
__ bind(&f3);
__ mov_w(eax, Operand(src, 0));
__ mov_b(edx, Operand(src, 2));
__ mov_w(Operand(dst, 0), eax);
__ mov_b(Operand(dst, 2), edx);
MemMoveEmitPopAndReturn(masm);
__ bind(&f4);
__ mov(eax, Operand(src, 0));
__ mov(Operand(dst, 0), eax);
MemMoveEmitPopAndReturn(masm);
__ bind(&f5_8);
__ mov(eax, Operand(src, 0));
__ mov(edx, Operand(src, count, times_1, -4));
__ mov(Operand(dst, 0), eax);
__ mov(Operand(dst, count, times_1, -4), edx);
MemMoveEmitPopAndReturn(masm);
__ bind(&small_size); // Entry point into this block.
if (v8_flags.debug_code) {
Label ok;
__ cmp(count, 8);
__ j(below_equal, &ok);
__ int3();
__ bind(&ok);
}
// Dispatch to handlers.
Label count_is_above_3, count_is_2_or_3;
__ cmp(count, 3);
__ j(greater, &count_is_above_3);
__ cmp(count, 1);
__ j(greater, &count_is_2_or_3);
__ j(less, &f0); // count == 0.
__ jmp(&f1); // count == 1.
__ bind(&count_is_2_or_3);
__ cmp(count, 3);
__ j(less, &f2); // count == 2.
__ jmp(&f3); // count == 3.
__ bind(&count_is_above_3);
__ cmp(count, 5);
__ j(less, &f4); // count == 4.
__ jmp(&f5_8); // count in [5, 8[.
}
__ bind(&pop_and_return);
MemMoveEmitPopAndReturn(masm);
}
namespace {
void Generate_DeoptimizationEntry(MacroAssembler* masm,
DeoptimizeKind deopt_kind) {
Isolate* isolate = masm->isolate();
// Save all general purpose registers before messing with them.
const int kNumberOfRegisters = Register::kNumRegisters;
const int kDoubleRegsSize = kDoubleSize * XMMRegister::kNumRegisters;
__ AllocateStackSpace(kDoubleRegsSize);
const RegisterConfiguration* config = RegisterConfiguration::Default();
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
XMMRegister xmm_reg = XMMRegister::from_code(code);
int offset = code * kDoubleSize;
__ movsd(Operand(esp, offset), xmm_reg);
}
__ pushad();
ExternalReference c_entry_fp_address =
ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate);
__ mov(masm->ExternalReferenceAsOperand(c_entry_fp_address, esi), ebp);
const int kSavedRegistersAreaSize =
kNumberOfRegisters * kSystemPointerSize + kDoubleRegsSize;
// Get the address of the location in the code object
// and compute the fp-to-sp delta in register edx.
__ mov(ecx, Operand(esp, kSavedRegistersAreaSize));
__ lea(edx, Operand(esp, kSavedRegistersAreaSize + 1 * kSystemPointerSize));
__ sub(edx, ebp);
__ neg(edx);
// Allocate a new deoptimizer object.
__ PrepareCallCFunction(5, eax);
__ mov(eax, Immediate(0));
Label context_check;
__ mov(edi, Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset));
__ JumpIfSmi(edi, &context_check);
__ mov(eax, Operand(ebp, StandardFrameConstants::kFunctionOffset));
__ bind(&context_check);
__ mov(Operand(esp, 0 * kSystemPointerSize), eax); // Function.
__ mov(Operand(esp, 1 * kSystemPointerSize),
Immediate(static_cast<int>(deopt_kind)));
__ mov(Operand(esp, 2 * kSystemPointerSize),
ecx); // InstructionStream address or 0.
__ mov(Operand(esp, 3 * kSystemPointerSize), edx); // Fp-to-sp delta.
__ Move(Operand(esp, 4 * kSystemPointerSize),
Immediate(ExternalReference::isolate_address(masm->isolate())));
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(ExternalReference::new_deoptimizer_function(), 5);
}
// Preserve deoptimizer object in register eax and get the input
// frame descriptor pointer.
__ mov(esi, Operand(eax, Deoptimizer::input_offset()));
// Fill in the input registers.
for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
int offset =
(i * kSystemPointerSize) + FrameDescription::registers_offset();
__ pop(Operand(esi, offset));
}
int double_regs_offset = FrameDescription::double_registers_offset();
// Fill in the double input registers.
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
int dst_offset = code * kDoubleSize + double_regs_offset;
int src_offset = code * kDoubleSize;
__ movsd(xmm0, Operand(esp, src_offset));
__ movsd(Operand(esi, dst_offset), xmm0);
}
// Clear FPU all exceptions.
// TODO(ulan): Find out why the TOP register is not zero here in some cases,
// and check that the generated code never deoptimizes with unbalanced stack.
__ fnclex();
// Mark the stack as not iterable for the CPU profiler which won't be able to
// walk the stack without the return address.
__ mov_b(__ ExternalReferenceAsOperand(
ExternalReference::stack_is_iterable_address(isolate), edx),
Immediate(0));
// Remove the return address and the double registers.
__ add(esp, Immediate(kDoubleRegsSize + 1 * kSystemPointerSize));
// Compute a pointer to the unwinding limit in register ecx; that is
// the first stack slot not part of the input frame.
__ mov(ecx, Operand(esi, FrameDescription::frame_size_offset()));
__ add(ecx, esp);
// Unwind the stack down to - but not including - the unwinding
// limit and copy the contents of the activation frame to the input
// frame description.
__ lea(edx, Operand(esi, FrameDescription::frame_content_offset()));
Label pop_loop_header;
__ jmp(&pop_loop_header);
Label pop_loop;
__ bind(&pop_loop);
__ pop(Operand(edx, 0));
__ add(edx, Immediate(sizeof(uint32_t)));
__ bind(&pop_loop_header);
__ cmp(ecx, esp);
__ j(not_equal, &pop_loop);
// Compute the output frame in the deoptimizer.
__ push(eax);
__ PrepareCallCFunction(1, esi);
__ mov(Operand(esp, 0 * kSystemPointerSize), eax);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(ExternalReference::compute_output_frames_function(), 1);
}
__ pop(eax);
__ mov(esp, Operand(eax, Deoptimizer::caller_frame_top_offset()));
// Replace the current (input) frame with the output frames.
Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header;
// Outer loop state: eax = current FrameDescription**, edx = one
// past the last FrameDescription**.
__ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
__ mov(eax, Operand(eax, Deoptimizer::output_offset()));
__ lea(edx, Operand(eax, edx, times_system_pointer_size, 0));
__ jmp(&outer_loop_header);
__ bind(&outer_push_loop);
// Inner loop state: esi = current FrameDescription*, ecx = loop
// index.
__ mov(esi, Operand(eax, 0));
__ mov(ecx, Operand(esi, FrameDescription::frame_size_offset()));
__ jmp(&inner_loop_header);
__ bind(&inner_push_loop);
__ sub(ecx, Immediate(sizeof(uint32_t)));
__ push(Operand(esi, ecx, times_1, FrameDescription::frame_content_offset()));
__ bind(&inner_loop_header);
__ test(ecx, ecx);
__ j(not_zero, &inner_push_loop);
__ add(eax, Immediate(kSystemPointerSize));
__ bind(&outer_loop_header);
__ cmp(eax, edx);
__ j(below, &outer_push_loop);
// In case of a failed STUB, we have to restore the XMM registers.
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
XMMRegister xmm_reg = XMMRegister::from_code(code);
int src_offset = code * kDoubleSize + double_regs_offset;
__ movsd(xmm_reg, Operand(esi, src_offset));
}
// Push pc and continuation from the last output frame.
__ push(Operand(esi, FrameDescription::pc_offset()));
__ push(Operand(esi, FrameDescription::continuation_offset()));
// Push the registers from the last output frame.
for (int i = 0; i < kNumberOfRegisters; i++) {
int offset =
(i * kSystemPointerSize) + FrameDescription::registers_offset();
__ push(Operand(esi, offset));
}
__ mov_b(__ ExternalReferenceAsOperand(
ExternalReference::stack_is_iterable_address(isolate), edx),
Immediate(1));
// Restore the registers from the stack.
__ popad();
__ InitializeRootRegister();
// Return to the continuation point.
__ ret(0);
}
} // namespace
void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager);
}
void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy);
}
namespace {
// Restarts execution either at the current or next (in execution order)
// bytecode. If there is baseline code on the shared function info, converts an
// interpreter frame into a baseline frame and continues execution in baseline
// code. Otherwise execution continues with bytecode.
void Generate_BaselineOrInterpreterEntry(MacroAssembler* masm,
bool next_bytecode,
bool is_osr = false) {
Label start;
__ bind(&start);
// Spill the accumulator register; note that we're not within a frame, so we
// have to make sure to pop it before doing any GC-visible calls.
__ push(kInterpreterAccumulatorRegister);
// Get function from the frame.
Register closure = eax;
__ mov(closure, MemOperand(ebp, StandardFrameConstants::kFunctionOffset));
// Get the InstructionStream object from the shared function info.
Register code_obj = esi;
__ mov(code_obj,
FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ mov(code_obj,
FieldOperand(code_obj, SharedFunctionInfo::kFunctionDataOffset));
// Check if we have baseline code. For OSR entry it is safe to assume we
// always have baseline code.
if (!is_osr) {
Label start_with_baseline;
__ CmpObjectType(code_obj, CODE_TYPE, kInterpreterBytecodeOffsetRegister);
__ j(equal, &start_with_baseline);
// Start with bytecode as there is no baseline code.
__ pop(kInterpreterAccumulatorRegister);
Builtin builtin_id = next_bytecode
? Builtin::kInterpreterEnterAtNextBytecode
: Builtin::kInterpreterEnterAtBytecode;
__ Jump(masm->isolate()->builtins()->code_handle(builtin_id),
RelocInfo::CODE_TARGET);
__ bind(&start_with_baseline);
} else if (v8_flags.debug_code) {
__ CmpObjectType(code_obj, CODE_TYPE, kInterpreterBytecodeOffsetRegister);
__ Assert(equal, AbortReason::kExpectedBaselineData);
}
if (v8_flags.debug_code) {
AssertCodeIsBaseline(masm, code_obj, ecx);
}
// Load the feedback cell and vector.
Register feedback_cell = eax;
Register feedback_vector = ecx;
__ mov(feedback_cell, FieldOperand(closure, JSFunction::kFeedbackCellOffset));
closure = no_reg;
__ mov(feedback_vector,
FieldOperand(feedback_cell, FeedbackCell::kValueOffset));
Label install_baseline_code;
// Check if feedback vector is valid. If not, call prepare for baseline to
// allocate it.
__ CmpObjectType(feedback_vector, FEEDBACK_VECTOR_TYPE,
kInterpreterBytecodeOffsetRegister);
__ j(not_equal, &install_baseline_code);
// Save BytecodeOffset from the stack frame.
__ mov(kInterpreterBytecodeOffsetRegister,
MemOperand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Replace bytecode offset with feedback cell.
static_assert(InterpreterFrameConstants::kBytecodeOffsetFromFp ==
BaselineFrameConstants::kFeedbackCellFromFp);
__ mov(MemOperand(ebp, BaselineFrameConstants::kFeedbackCellFromFp),
feedback_cell);
feedback_cell = no_reg;
// Update feedback vector cache.
static_assert(InterpreterFrameConstants::kFeedbackVectorFromFp ==
BaselineFrameConstants::kFeedbackVectorFromFp);
__ mov(MemOperand(ebp, InterpreterFrameConstants::kFeedbackVectorFromFp),
feedback_vector);
feedback_vector = no_reg;
// Compute baseline pc for bytecode offset.
ExternalReference get_baseline_pc_extref;
if (next_bytecode || is_osr) {
get_baseline_pc_extref =
ExternalReference::baseline_pc_for_next_executed_bytecode();
} else {
get_baseline_pc_extref =
ExternalReference::baseline_pc_for_bytecode_offset();
}
Register get_baseline_pc = ecx;
__ LoadAddress(get_baseline_pc, get_baseline_pc_extref);
// If the code deoptimizes during the implicit function entry stack interrupt
// check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
// not a valid bytecode offset.
// TODO(pthier): Investigate if it is feasible to handle this special case
// in TurboFan instead of here.
Label valid_bytecode_offset, function_entry_bytecode;
if (!is_osr) {
__ cmp(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset));
__ j(equal, &function_entry_bytecode);
}
__ sub(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ bind(&valid_bytecode_offset);
// Get bytecode array from the stack frame.
__ mov(kInterpreterBytecodeArrayRegister,
MemOperand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ PrepareCallCFunction(3, eax);
__ mov(Operand(esp, 0 * kSystemPointerSize), code_obj);
__ mov(Operand(esp, 1 * kSystemPointerSize),
kInterpreterBytecodeOffsetRegister);
__ mov(Operand(esp, 2 * kSystemPointerSize),
kInterpreterBytecodeArrayRegister);
__ CallCFunction(get_baseline_pc, 3);
}
__ LoadCodeInstructionStart(code_obj, code_obj);
__ add(code_obj, kReturnRegister0);
__ pop(kInterpreterAccumulatorRegister);
if (is_osr) {
DCHECK_EQ(feedback_cell, no_reg);
closure = ecx;
__ mov(closure, MemOperand(ebp, StandardFrameConstants::kFunctionOffset));
ResetJSFunctionAge(masm, closure, closure);
Generate_OSREntry(masm, code_obj);
} else {
__ jmp(code_obj);
}
__ Trap(); // Unreachable.
if (!is_osr) {
__ bind(&function_entry_bytecode);
// If the bytecode offset is kFunctionEntryOffset, get the start address of
// the first bytecode.
__ mov(kInterpreterBytecodeOffsetRegister, Immediate(0));
if (next_bytecode) {
__ LoadAddress(get_baseline_pc,
ExternalReference::baseline_pc_for_bytecode_offset());
}
__ jmp(&valid_bytecode_offset);
}
__ bind(&install_baseline_code);
// Pop/re-push the accumulator so that it's spilled within the below frame
// scope, to keep the stack valid.
__ pop(kInterpreterAccumulatorRegister);
// Restore the clobbered context register.
__ mov(kContextRegister,
Operand(ebp, StandardFrameConstants::kContextOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(kInterpreterAccumulatorRegister);
// Reload closure.
closure = eax;
__ mov(closure, MemOperand(ebp, StandardFrameConstants::kFunctionOffset));
__ Push(closure);
__ CallRuntime(Runtime::kInstallBaselineCode, 1);
__ Pop(kInterpreterAccumulatorRegister);
}
// Retry from the start after installing baseline code.
__ jmp(&start);
}
} // namespace
void Builtins::Generate_BaselineOrInterpreterEnterAtBytecode(
MacroAssembler* masm) {
Generate_BaselineOrInterpreterEntry(masm, false);
}
void Builtins::Generate_BaselineOrInterpreterEnterAtNextBytecode(
MacroAssembler* masm) {
Generate_BaselineOrInterpreterEntry(masm, true);
}
void Builtins::Generate_InterpreterOnStackReplacement_ToBaseline(
MacroAssembler* masm) {
Generate_BaselineOrInterpreterEntry(masm, false, true);
}
void Builtins::Generate_RestartFrameTrampoline(MacroAssembler* masm) {
// Frame is being dropped:
// - Look up current function on the frame.
// - Leave the frame.
// - Restart the frame by calling the function.
__ mov(edi, Operand(ebp, StandardFrameConstants::kFunctionOffset));
__ mov(eax, Operand(ebp, StandardFrameConstants::kArgCOffset));
__ LeaveFrame(StackFrame::INTERPRETED);
// The arguments are already in the stack (including any necessary padding),
// we should not try to massage the arguments again.
__ mov(ecx, Immediate(kDontAdaptArgumentsSentinel));
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
__ InvokeFunctionCode(edi, no_reg, ecx, eax, InvokeType::kJump);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_IA32