%PDF- %PDF-
| Direktori : /lib64/python3.9/site-packages/numpy/core/__pycache__/ |
| Current File : //lib64/python3.9/site-packages/numpy/core/__pycache__/multiarray.cpython-39.pyc |
a
z[yc�� � @ s� d Z ddlZddlmZ ddlmZ ddlT ddlmZmZmZmZm Z m
Z
mZmZm
Z
mZmZ g d�Zd e _d e_d
e_d
e_d
e_d
e_d
e_d
e_d
e_d
e_d
e_d
e_d
e_d
e_d
e_d
e_d
e _d
e!_d
e"_d
e#_d
e$_d
e%_d
e&_ej'ej(d
ddd
�Z)e)ej*�d>dd��Z*e)ej+�d?ddd�dd��Z+e)ej,�dd� �Z,e)ej-�d@dd��Z-e)ej.�dAdd��Z.e)ej/�dBdd��Z/e)ej0�dd� �Z0e)ej1�dd� �Z1e)ej2�dCdd ��Z2e)ej3�d!d"� �Z3e)ej4�dDd#d$��Z4e)ej5�dEd%d&��Z5e)ej6�dFd'd(��Z6e)ej7�dGd)d*��Z7e)ej8�d+d,� �Z8e)ej9�dHd.d/��Z9e)ej:�dId0d1��Z:e)ej;�dJd2d3��Z;e)ej!�dKd4d5��Z!e)ej<�dLd6d7��Z<e)ej=�dMd8d9��Z=e)ej>�dNd:d;��Z>e)ej?�dOd<d=��Z?dS )Pa
Create the numpy.core.multiarray namespace for backward compatibility. In v1.16
the multiarray and umath c-extension modules were merged into a single
_multiarray_umath extension module. So we replicate the old namespace
by importing from the extension module.
� N� )� overrides)�_multiarray_umath)�*)�_fastCopyAndTranspose� _flagdict�from_dlpack�_insert�_reconstruct�_vec_string�
_ARRAY_API�
_monotonicity�_get_ndarray_c_version�_get_madvise_hugepage�_set_madvise_hugepage)]r Z
ALLOW_THREADS�BUFSIZEZCLIPZ
DATETIMEUNITSZITEM_HASOBJECTZITEM_IS_POINTERZLIST_PICKLEZMAXDIMSZMAY_SHARE_BOUNDSZMAY_SHARE_EXACTZ
NEEDS_INITZNEEDS_PYAPIZRAISEZUSE_GETITEMZUSE_SETITEMZWRAPr r r r r
r r
Z
add_docstring�arange�array�asarray�
asanyarray�ascontiguousarray�asfortranarray�bincount� broadcast�busday_count�
busday_offsetZbusdaycalendar�can_castZcompare_chararrays�concatenate�copytoZ correlateZ
correlate2Z
count_nonzeroZc_einsum�datetime_as_string�
datetime_data�dotZdragon4_positionalZdragon4_scientific�dtype�empty�
empty_like�errorZflagsobjZflatiterZformat_longfloat�
frombuffer�fromfile�fromiter�
fromstringZget_handler_nameZget_handler_version�innerZinterpZinterp_complex� is_busday�lexsort�matmul�may_share_memory�min_scalar_typeZndarrayZnditer�nested_itersZnormalize_axis_index�packbits�
promote_types�putmask�ravel_multi_index�result_type�scalarZset_datetimeparse_functionZset_legacy_print_mode�set_numeric_opsZset_string_functionZset_typeDict�
shares_memoryZtracemalloc_domainZtypeinfo�
unpackbits�
unravel_index�vdot�where�zerosznumpy.core.multiarrayZnumpyTF)�moduleZdocs_from_dispatcherZverifyc C s | fS )a
empty_like(prototype, dtype=None, order='K', subok=True, shape=None)
Return a new array with the same shape and type as a given array.
Parameters
----------
prototype : array_like
The shape and data-type of `prototype` define these same attributes
of the returned array.
dtype : data-type, optional
Overrides the data type of the result.
.. versionadded:: 1.6.0
order : {'C', 'F', 'A', or 'K'}, optional
Overrides the memory layout of the result. 'C' means C-order,
'F' means F-order, 'A' means 'F' if `prototype` is Fortran
contiguous, 'C' otherwise. 'K' means match the layout of `prototype`
as closely as possible.
.. versionadded:: 1.6.0
subok : bool, optional.
If True, then the newly created array will use the sub-class
type of `prototype`, otherwise it will be a base-class array. Defaults
to True.
shape : int or sequence of ints, optional.
Overrides the shape of the result. If order='K' and the number of
dimensions is unchanged, will try to keep order, otherwise,
order='C' is implied.
.. versionadded:: 1.17.0
Returns
-------
out : ndarray
Array of uninitialized (arbitrary) data with the same
shape and type as `prototype`.
See Also
--------
ones_like : Return an array of ones with shape and type of input.
zeros_like : Return an array of zeros with shape and type of input.
full_like : Return a new array with shape of input filled with value.
empty : Return a new uninitialized array.
Notes
-----
This function does *not* initialize the returned array; to do that use
`zeros_like` or `ones_like` instead. It may be marginally faster than
the functions that do set the array values.
Examples
--------
>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> np.empty_like(a)
array([[-1073741821, -1073741821, 3], # uninitialized
[ 0, 0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized
[ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
� )Z prototyper"